1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
from random import random
from itertools import product
from collections import defaultdict
from sys import argv
from fann2 import libfann
maze = [ [0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 2] ]
start=(1,1)
theta = 0.01
gamma=0.9 # discount
epsilon = 0.1
epsilon_reduction = 1
alpha = 0.4
alpha_reduction = 0.9998
friendlyness = 0.7 # probability that the model actually performs the action we've requested.
# the model will perform a random other actions with probability of (1-friendlyness)/3.
# putting 0.25 here will make it just random.
frameskip = 99
visu = True
def cursor_up(n):
print("\033[%dA" % n)
def args(argv):
result=defaultdict(lambda:None)
ss=None
for s in argv[1:]+["-"]:
if s[0]=='-':
if ss!=None:
result[ss]=True
ss=s
else:
if ss!=None:
result[ss]=s
ss=None
else:
explode
return result
arg=args(argv)
print(arg)
mode = None
if arg['-h']:
print("Usage: %s MODE [OPTIONS]" % argv[0])
print(" MODE: -1 / --policy-evaluation or\n" +
" -2 / --q-learning\n" +
" OPTIONS: --theta NUM # convergence threshold\n" +
" # default: %f\n" % theta +
" --gamma NUM # learning discount\n" +
" # default: %f\n" % gamma +
" --alpha NUM # learning rate for q-learning\n" +
" # default: %f\n" % alpha +
" --alphared NUM # reduction of alpha per episode\n" +
" # default: %f\n" % alpha_reduction +
" --friendly NUM # friendlyness of the system (probability\n" +
" that the requested action is really done)\n" +
" # default: %f\n" % friendlyness +
" --epsilon NUM # value for the epsilon-policy used in q-learning\n" +
" # default: %f\n" % epsilon +
" --epsred NUM # reduction of epsilon per episode\n" +
" # default: %f\n\n" % epsilon_reduction +
" --frameskip NUM # frameskip for visualisation\n" +
" # default: %f\n" % frameskip +
" --quiet # disable visualisation\n" +
" --file FILE # output file for q learning")
exit()
if arg['-q'] or arg['--quiet']:
visu = False
if arg['--theta']:
theta = float(arg['--theta'])
if arg['--gamma']:
gamma = float(arg['--gamma'])
if arg['--epsilon']:
epsilon = float(arg['--epsilon'])
if arg['--epsred']:
epsilon_reduction = float(arg['--epsred'])
if arg['--alpha']:
alpha = float(arg['--alpha'])
if arg['--alphared']:
alpha_reduction = float(arg['--alphared'])
if arg['--friendly']:
friendlyness = float(arg['--friendly'])
logfile = None
if arg['--file']:
logfile = open(arg['--file'], "w")
NORTH=0
EAST=1
SOUTH=2
WEST=3
directions = [NORTH, EAST, SOUTH, WEST]
dir_coords = [(0,-1), (1,0), (0,1), (-1,0)]
def argmax(l):
return max(range(len(l)), key=lambda i:l[i])
def draw_randomly(d):
c = 0.
rnd = random()
for k in d:
c += d[k]
if rnd < c:
return k
def visualize(maze, Q):
n=0
for y in range(len(maze)):
line1=""
line2=""
line3=""
line4=""
line5=""
for x in range(len(maze[0])):
if maze[y][x] == 1:
f = lambda s : s.replace(" ","@")
elif maze[y][x] == 2:
f = lambda s : s.replace(" ","+")
else:
f = lambda s : s
Qev = Q.eval(x,y)
maxdir = argmax(Qev)
line3 += f("' " + ("^" if maxdir == NORTH else " ") + " ")
line5 += f(" " + ("v" if maxdir == SOUTH else " ") + " ")
line1 += f(" %06.2f " % Qev[NORTH])
line2 += f("%s%06.2f %06.2f%s" % ("<" if maxdir == WEST else " ",Qev[WEST], Qev[EAST], ">" if maxdir == EAST else " "))
line4 += f(" %06.2f " % Qev[SOUTH])
print(line3)
print(line1)
print(line2)
print(line4)
print(line5)
n+=5
return n
class World:
def __init__(self, maze, pos):
self.x,self.y = pos
self.maze = maze
self.xlen = len(maze[0])
self.ylen = len(maze)
def possible_next_states(self, s):
# must return at least all possible states.
# must only return valid states.
x,y = s
return filter(lambda s : s[0]>=0 and s[1]>=0 and s[0] < self.xlen and s[1] < self.ylen, [(x,y),(x+1,y),(x-1,y),(x,y-1),(x,y+1)])
# definitely walks from (x,y) into direction.
# returns the neighboring coordinate on success,
# or the old one if there was a wall
def walk(self, x,y, direction):
dx,dy=dir_coords[direction]
nx,ny = x+dx, y+dy
if 0 <= nx and nx < self.xlen and \
0 <= ny and ny < self.ylen and \
self.maze[y][x] == 0 and \
self.maze[ny][nx] != 1:
return nx,ny
else:
return x,y
# gives probabilities for new states, given
# the command "direction".
def action(self, x,y , direction):
newstates = defaultdict(lambda:0.)
for i in range(4):
newstates[ self.walk(x,y, (direction+i)%4 ) ] += friendlyness if i == 0 else (1-friendlyness)/3. #[1.0,0.,0.,0.][i] # [0.7,0.1,0.1,0.1][i]
return newstates
def take_action(self, x,y, direction):
newstates = self.action(x,y,direction)
ss = draw_randomly(newstates)
return self.R((x,y),ss, None), ss
def R(self, s, ss, pi):
if s!=ss and self.maze[ss[1]][ss[0]] == 2: # goal
return 10.0
else:
return 0.
def is_final(self,s):
return self.maze[s[1]][s[0]] == 2
# abstracts the Q-array. semantics of .eval(x,y) is `Q[y][x]`. semantics of .change((x,y),ac,diff) is `Q[y][x][ac]+=diff`
class QArray:
def __init__(self):
self.Q = [ [ [0. for k in range(4)] for i in range(a.xlen) ] for j in range(a.ylen) ]
def eval(self,x,y = None):
if y==None: x,y = x
return self.Q[y][x]
def change(self, s, action, diff):
self.Q[s[1]][s[0]][action] += diff
# implements the Q function not through an array, but through a neuronal network instead.
class QNN:
def __init__(self):
connection_rate = 1
num_input = 2
hidden = (40,40)
num_output = 4
learning_rate = 0.7
self.NN = libfann.neural_net()
self.NN.create_sparse_array(connection_rate, (num_input,)+hidden+(num_output,))
self.NN.set_learning_rate(learning_rate)
#self.NN.set_activation_function_input(libfann.SIGMOID_SYMMETRIC_STEPWISE)
self.NN.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
self.NN.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
#self.NN.set_activation_function_output(libfann.LINEAR)
def eval(self,x,y = None):
if y==None: x,y = x
return [x*10. for x in self.NN.run([x,y])]
def change(self, s, action, diff):
oldval = self.eval(s)
newval = list(oldval) # copy list
newval[action] += diff
self.NN.train(list(s), [x/10. for x in newval])
a = World(maze, start)
#Q=QArray()
Q=QNN()
i=0
stopstate = -1
total_reward = 0.
for i in range(1000000):
s = start
maxdiff=0.
for j in range(100):
# epsilon-greedy
greedy = argmax(Q.eval(s))
rnd = random()
action = None
if rnd < epsilon:
action = ( greedy + int(1 + 3 * rnd / epsilon) ) % 4
else:
action = greedy
r,ss = a.take_action(s[0],s[1], action)
#print ((r,ss))
diff = alpha * (r + gamma * max( [ Q.eval(ss)[aa] for aa in directions ] ) - Q.eval(s)[action])
Q.change(s,action,diff)
maxdiff = max(abs(diff),maxdiff)
total_reward += r
s = ss
if a.is_final(ss):
break
if (i % (frameskip+1) == 0):
print("iteration %.3d, alpha=%.3e, epsilon=%.3e maxdiff=%.7f"%(i,alpha,epsilon,maxdiff))
n = 0
if visu:
n = visualize(maze,Q)
cursor_up(n+2)
if (logfile != None):
print("%d\t%f" % (i, total_reward), file=logfile)
# Wikipedia says on this: "When the problem is stochastic [which it is!],
# the algorithm still converges under some technical conditions on the
# learning rate, that require it to decrease to zero.
# So let's sloooowly decrease our learning rate here. Otherwise it won't
# converge, but instead oscillate plus/minus 0.5.
# However, if we set the friendlyness of our system to 1.0, then it would
# also converge without this learning rate reduction, because we have a
# non-stochastic but a deterministic system now.
alpha *= alpha_reduction
epsilon *= epsilon_reduction
# stop once we're below theta for at least 100 episodes. But not before we went above theta at least once.
if maxdiff < theta:
stopstate -= 1
if stopstate == 0:
break
else:
stopstate = 1000
print("finished after %.3d iterations, alpha=%.3e, epsilon=%.3e"%(i,alpha,epsilon))
visualize(maze,Q)
if logfile != None:
logfile.close()
|