1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
|
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
void set_pixel(Mat m, Point p, Scalar color)
{
line(m,p,p,color);
}
int find_intersection_index(int x0, int y0, int x1, int y1, int** contour_map, bool stop_at_endpoint=true) // bresenham aus der dt. wikipedia
// returns: the point's index where the intersection happened, or a negative number if no intersection.
{
int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1;
int err = dx+dy, e2; /* error value e_xy */
for(;;)
{
//setPixel(x0,y0);
if (contour_map[x0][y0]>0) return contour_map[x0][y0]; // found intersection?
if (contour_map[x0][y0+1]>0) return contour_map[x0][y0+1];
if (contour_map[x0+1][y0]>0) return contour_map[x0+1][y0];
if (stop_at_endpoint && x0==x1 && y0==y1) break;
e2 = 2*err;
if (e2 > dy) { err += dy; x0 += sx; } /* e_xy+e_x > 0 */
if (e2 < dx) { err += dx; y0 += sy; } /* e_xy+e_y < 0 */
}
return -1;
}
Mat circle_mat(int radius)
{
Mat result(radius*2+1, radius*2+1, CV_8U);
for (int x=0; x<=result.cols/2; x++)
for (int y=0; y<=result.rows/2; y++)
{
unsigned char& p1 = result.at<unsigned char>(result.cols/2 + x, result.rows/2 + y);
unsigned char& p2 = result.at<unsigned char>(result.cols/2 - x, result.rows/2 + y);
unsigned char& p3 = result.at<unsigned char>(result.cols/2 + x, result.rows/2 - y);
unsigned char& p4 = result.at<unsigned char>(result.cols/2 - x, result.rows/2 - y);
if ( x*x + y*y < radius*radius )
p1=p2=p3=p4=255;
else
p1=p2=p3=p4=0;
}
return result;
}
void hue2rgb(float hue, int* r, int* g, int* b)
{
double ff;
int i;
if (hue >= 360.0) hue = 0.0;
hue /= 60.0;
i = (int)hue;
ff = hue - i;
int x=ff*255;
switch(i) {
case 0:
*r = 255;
*g = x;
*b = 0;
break;
case 1:
*r = 255-x;
*g = 255;
*b = 0;
break;
case 2:
*r = 0;
*g = 255;
*b = x;
break;
case 3:
*r = 0;
*g = 255-x;
*b = 255;
break;
case 4:
*r = x;
*g = 0;
*b = 255;
break;
case 5:
default:
*r = 255;
*g = 0;
*b = 255-x;
break;
}
}
double linear(double x, double x1, double y1, double x2, double y2, bool clip=false, double clipmin=INFINITY, double clipmax=INFINITY)
{
if (clipmin==INFINITY) clipmin=y1;
if (clipmax==INFINITY) clipmax=y2;
if (clipmin>clipmax) { int tmp=clipmin; clipmin=clipmax; clipmax=tmp; }
double result = (y2-y1)*(x-x1)/(x2-x1)+y1;
if (clip)
{
if (result>clipmax) return clipmax;
else if (result<clipmin) return clipmin;
else return result;
}
else
return result;
}
int annotate_regions(Mat img) //img is treated as black/white (0, !=0)
// changes img, and returns the number of found areas
{
int region_index=1; // "0" means "no area"
for (int row = 0; row<img.rows; row++)
{
uchar* data=img.ptr<uchar>(row);
for (int col=0; col<img.cols;col++)
{
if (*data==255)
{
floodFill(img, Point(col,row), region_index);
region_index++;
}
data++;
}
}
return region_index-1;
}
Mat nicely_draw_regions(Mat annotated, int* area_cnt, int total_area_cnt, int largest_region)
{
Mat result;
annotated.copyTo(result);
// Das ist nur zum schönsein.
for (int row=0; row<result.rows; row++)
{
uchar* data=result.ptr<uchar>(row);
for (int col=0; col<result.cols;col++)
{
if (*data)
{
long long tmp = (long long)30000*(long)area_cnt[*data-1]/(long)total_area_cnt + 64;
if (tmp>200) tmp=200;
if (*data==largest_region) tmp=255;
*data=tmp;
}
data++;
}
}
}
double only_retain_largest_region(Mat img, int* size)
// img is a binary image
// in *size, if non-NULL, the size of the largest area is stored.
// returns: ratio between the second-largest and largest region
// 0.0 means "that's the only region", 1.0 means "both had the same size!"
// can be interpreted as 1.0 - "confidence".
{
int n_regions = annotate_regions(img);
// calculate the area of each region
int* area_cnt = new int[n_regions];
for (int i=0;i<n_regions;i++) area_cnt[i]=0;
int total_area_cnt=0;
for (int row=0; row<img.rows; row++)
{
uchar* data=img.ptr<uchar>(row);
for (int col=0; col<img.cols;col++)
{
if (*data)
{
area_cnt[*data-1]++;
total_area_cnt++;
}
data++;
}
}
// finde die größte und zweitgrößte fläche
int maxi=0, maxa=area_cnt[0], maxi2=-1;
for (int i=1;i<n_regions;i++)
{
if (area_cnt[i]>maxa)
{
maxa=area_cnt[i];
maxi2=maxi;
maxi=i;
}
}
// lösche alle bis auf die größte fläche
for (int row = 0; row<img.rows; row++)
{
uchar* data=img.ptr<uchar>(row);
for (int col=0; col<img.cols;col++)
{
if (*data)
{
if (*data!=maxi+1) *data=0; else *data=255;
}
data++;
}
}
if (size) *size=area_cnt[maxi];
if (maxi2==-1) return 0;
else return (double)area_cnt[maxi2]/(double)area_cnt[maxi];
}
vector<Point>& prepare_and_get_contour(int xlen, int ylen, vector< vector<Point> >& contours, const vector<Vec4i>& hierarchy,
int* low_y, int* low_idx, int* high_y, int* first_nonbottom_idx)
{
assert(low_y!=NULL);
assert(low_idx!=NULL);
assert(high_y!=NULL);
assert(first_nonbottom_idx!=NULL);
// find index of our road contour
int road_contour_idx=-1;
for (road_contour_idx=0; road_contour_idx<contours.size(); road_contour_idx++)
if (hierarchy[road_contour_idx][3]<0) // this will be true for exactly one road_contour_idx.
break;
assert(road_contour_idx>=0 && road_contour_idx<contours.size());
assert(contours[road_contour_idx].size()>0);
vector<Point>& contour = contours[road_contour_idx]; // just a shorthand
// our road is now in contour.
// find highest and lowest contour point. (where "low" means high y-coordinate)
*low_y=0; *low_idx=0;
*high_y=ylen;
for (int j=0;j<contour.size(); j++)
{
if (contour[j].y > *low_y)
{
*low_y=contour[j].y;
*low_idx=j;
}
if (contour[j].y < *high_y)
{
*high_y=contour[j].y;
}
}
// make the contour go "from bottom upwards and then downwards back to bottom".
std::rotate(contour.begin(),contour.begin()+*low_idx,contour.end());
*first_nonbottom_idx = 0;
for (;*first_nonbottom_idx<contour.size();*first_nonbottom_idx++)
if (contour[*first_nonbottom_idx].y < contour[0].y-1) break;
// indices 0 to *first_nonbottom_idx-1 is now the bottom line of our contour.
return contour;
}
void init_contour_map(const vector<Point>& contour, int** contour_map, int xlen, int ylen)
{
for (int j=0;j<xlen;j++) // zero it
memset(contour_map[j],0,ylen*sizeof(**contour_map));
for (int j=0;j<contour.size(); j++) // fill it
contour_map[contour[j].x][contour[j].y]=j;
}
// returns a new double[]
double* calc_contour_angles(const vector<Point>& contour, int first_nonbottom_idx, int ylen, int smoothen_middle, int smoothen_bottom)
{
// calculate directional angle for each nonbottom contour point
double* angles = new double[contour.size()];
for (int j=first_nonbottom_idx; j<contour.size(); j++)
{
int smoothen=linear(contour[j].y, ylen/2 ,smoothen_middle, ylen,smoothen_bottom, true);
// calculate left and right point for the difference quotient, possibly wrap.
int j1=(j+smoothen); while (j1 >= contour.size()) j1-=contour.size();
int j2=(j-smoothen); while (j2 < 0) j2+=contour.size();
// calculate angle, adjust it to be within [0, 360)
angles[j] = atan2(contour[j1].y - contour[j2].y, contour[j1].x - contour[j2].x) * 180/3.141592654;
if (angles[j]<0) angles[j]+=360;
}
return angles;
}
double* calc_angle_deriv(double* angles, int first_nonbottom_idx, int size, int ang_smooth)
{
// calculate derivative of angle for each nonbottom contour point
double* angle_derivative = new double[size];
for (int j=first_nonbottom_idx+ang_smooth; j<size-ang_smooth; j++)
{
// calculate angular difference, adjust to be within [0;360) and take the shorter way.
double ang_diff = angles[j+ang_smooth]-angles[j-ang_smooth];
while (ang_diff<0) ang_diff+=360;
while (ang_diff>=360) ang_diff-=360;
if (ang_diff>=180) ang_diff=360-ang_diff;
angle_derivative[j] = (double)ang_diff / ang_smooth;
}
// poorly extrapolate the ang_smooth margins
for (int j=first_nonbottom_idx; j<first_nonbottom_idx+ang_smooth; j++) angle_derivative[j]=angle_derivative[first_nonbottom_idx+ang_smooth];
for (int j=size-ang_smooth; j<size; j++) angle_derivative[j]=angle_derivative[size-ang_smooth-1];
return angle_derivative;
}
int find_bestquality_index(const vector<Point>& contour, double* angle_derivative, int xlen, int ylen, int high_y, int first_nonbottom_idx, Mat& drawing,
int* bestquality_j_out, int* bestquality_width_out, int* bestquality_out, int* bestquality_max_out)
{
assert(bestquality_out!=NULL);
assert(bestquality_j_out!=NULL);
assert(bestquality_width_out!=NULL);
double lastmax=-999999;
double bestquality=0.0;
double bestquality_max=0.0;
int bestquality_j=-1;
int bestquality_width=-1;
#define MAX_HYST 0.8
// search for "maximum regions"; i.e. intervals [a,b] with
// ang_deriv[i] >= MAX_HYST * max_deriv \forall i \in [a,b] and
// ang_deriv[a-1,2,3], ang_deriv[b+1,2,3] < MAX_HYST * max_deriv
// where max_deriv = max_{i \in [a,b]} ang_deriv[i];
for (int j=3; j<contour.size()-3; j++)
{
// search forward for a maximum, and the end of a maximum region.
if (angle_derivative[j] > lastmax) lastmax=angle_derivative[j];
if (angle_derivative[j] < MAX_HYST*lastmax && // found the end of the max. region
angle_derivative[j+1] < MAX_HYST*lastmax &&
angle_derivative[j+2] < MAX_HYST*lastmax)
{
if (lastmax > 7) // threshold the maximum.
{
// search backward for the begin of that maximum region
int j0;
for (j0=j-1; j0>=0; j0--)
if (angle_derivative[j0] < MAX_HYST*lastmax &&
angle_derivative[j0-1] < MAX_HYST*lastmax &&
angle_derivative[j0-2] < MAX_HYST*lastmax)
break;
// maximum region is [j0; j]
double median_of_max_region = (double)angle_derivative[(j+j0)/2];
// calculate quality of that maximum. quality is high, if
// 1) the maximum has a high value AND
// 2) the corresponding point's y-coordinates are near the top image border AND
// 3) the corresponding point's x-coordinates are near the middle of the image, if in doubt
int middle_x = xlen/2;
int distance_from_middle_x = abs(xlen/2 - contour[j].x);
double quality = lastmax
* linear( contour[j].y, high_y, 1.0, high_y+ (ylen-high_y)/10, 0.0, true) // excessively punish points far away from the top border
* linear( distance_from_middle_x, 0.8*middle_x, 1.0, middle_x, 0.6, true); // moderately punish point far away from the x-middle.
// keep track of the best point
if (quality>bestquality)
{
bestquality=quality;
bestquality_max=lastmax;
bestquality_j=(j+j0)/2;
bestquality_width=j-j0;
}
// irrelevant drawing stuff
int x=drawing.cols-drawing.cols*((j+j0)/2-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx);
line(drawing, Point(x,25+40-3*quality), Point(x, 25+40), Scalar(0,255,0));
circle(drawing, contour[(j+j0)/2], 1, Scalar(128,0,0));
}
lastmax=-999999; // reset lastmax, so the search can go on
}
}
// now bestquality_j holds the index of the point with the best quality.
*bestquality_out = bestquality;
*bestquality_max_out = bestquality_max;
*bestquality_j_out = bestquality_j;
*bestquality_width_out = bestquality_width;
}
int find_ideal_line(int xlen, int ylen, vector<Point>& contour, Point origin_point, int** contour_map, int bestquality_j)
// TODO: this code is crappy, slow, and uses brute force. did i mention it's crappy and slow?
{
int intersection = find_intersection_index(origin_point.x, origin_point.y,
contour[bestquality_j].x, contour[bestquality_j].y, contour_map);
int steering_point=-1;
if (intersection<0)
{
cout << "THIS SHOULD NEVER HAPPEN" << endl;
return -1;
}
else
{
int xx=contour[bestquality_j].x;
int lastheight=-1;
if (intersection < bestquality_j) // too far on the right == intersecting the right border
{
// rotate the line to the left till it gets better
for (; xx>=0; xx--)
{
int intersection2 = find_intersection_index(origin_point.x, origin_point.y, xx, contour[bestquality_j].y, contour_map);
if (intersection2<0) // won't happen anyway
break;
if (intersection2>=bestquality_j) // now we intersect the opposite (=left) border
{
if (contour[intersection2].y>=lastheight) // we intersect at a lower = worse point?
xx++; // then undo last step
break;
}
lastheight=contour[intersection2].y;
}
}
else if (intersection > bestquality_j) // too far on the left == intersecting the left border
{
// rotate the line to the right till it gets better
for (; xx<xlen; xx++)
{
int intersection2 = find_intersection_index(origin_point.x, origin_point.y, xx, contour[bestquality_j].y, contour_map);
if (intersection2<0)// won't happen anyway
break;
if (intersection2<=bestquality_j) // now we intersect the opposite (=right) border
{
if (contour[intersection2].y>=lastheight) // we intersect at a lower = worse point?
xx--; // then undo last step
break;
}
lastheight=contour[intersection2].y;
}
}
// else // we directly met the bestquality point, i.e. where we wanted to go to.
// do nothing
return find_intersection_index(origin_point.x,origin_point.y, xx, contour[bestquality_j].y, contour_map, false);
}
}
void draw_it_all(Mat drawing, vector< vector<Point> >& contours, const vector<Vec4i>& hierarchy, int first_nonbottom_idx, vector<Point>& contour,
double* angles, double* angle_derivative, int bestquality_j, int bestquality_width, int bestquality,
int steering_point, Point origin_point)
{
// Draw contours
drawContours(drawing, contours, -1, Scalar(255,0,0), 1, 8, hierarchy);
// draw the angles
for (int j=first_nonbottom_idx; j<contour.size(); j++)
{
int x=drawing.cols-drawing.cols*(j-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx);
// draw angle as color bar
int r,g,b;
hue2rgb(angles[j], &r, &g, &b);
line(drawing,Point(x,0), Point(x,10), Scalar(b,g,r));
// draw derivation of angle as color bar
int c=abs(20* angle_derivative[j]);
Scalar col=(c<256) ? Scalar(255-c,255-c,255) : Scalar(255,0,255);
line(drawing, Point(x,12), Point(x,22), col);
// and as x-y-graph
int y=25+40-2*angle_derivative[j];
set_pixel(drawing, Point(x,y), Scalar(255,255,255));
// draw into contour
//circle(drawing, contour[j], 2, col);
set_pixel(drawing, contour[j], col);
}
// draw the point where the left touches the right road border
circle(drawing, contour[bestquality_j], 3, Scalar(255,255,0));
circle(drawing, contour[bestquality_j], 2, Scalar(255,255,0));
circle(drawing, contour[bestquality_j], 1, Scalar(255,255,0));
circle(drawing, contour[bestquality_j], 0, Scalar(255,255,0));
// draw the detected left and right border. low saturation means
// a worse detection result
int antisaturation = 200-(200* bestquality/10.0);
if (antisaturation<0) antisaturation=0;
for (int j=0;j<bestquality_j-bestquality_width/2;j++)
set_pixel(drawing, contour[j], Scalar(255,antisaturation,255));
for (int j=bestquality_j+bestquality_width/2;j<contour.size();j++)
set_pixel(drawing, contour[j], Scalar(antisaturation,255,antisaturation));
// a direct line to where left touches right
line(drawing, contour[bestquality_j], origin_point, Scalar(0,64,64));
if (steering_point>=0) // should be always true
line(drawing, contour[steering_point], origin_point, Scalar(0,255,255));
}
#define SMOOTHEN_BOTTOM 20
#define SMOOTHEN_MIDDLE 7
#define ANG_SMOOTH 9
// return the index of the point to steer to.
int find_steering_point(Mat orig_img, Point origin_point, int** contour_map, Mat& drawing, double* confidence) // orig_img is a binary image
// confidence is between 0.0 (not sure at all) and 1.0 (definitely sure)
{
assert(confidence!=NULL);
Mat img;
orig_img.copyTo(img); // this is needed because findContours destroys its input.
drawing = Mat::zeros( img.size(), CV_8UC3 );
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(img, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE, Point(0, 0));
int low_y, low_idx, high_y, first_nonbottom_idx;
vector<Point>& contour = prepare_and_get_contour(img.cols, img.rows, contours, hierarchy,
&low_y, &low_idx, &high_y, &first_nonbottom_idx);
init_contour_map(contour, contour_map, img.cols, img.rows);
double* angles = calc_contour_angles(contour, first_nonbottom_idx, img.rows, SMOOTHEN_MIDDLE, SMOOTHEN_BOTTOM);
double* angle_derivative = calc_angle_deriv(angles, first_nonbottom_idx, contour.size(), ANG_SMOOTH);
int bestquality, bestquality_j, bestquality_width, bestquality_max;
find_bestquality_index(contour, angle_derivative, img.cols, img.rows, high_y, first_nonbottom_idx, drawing,
&bestquality_j, &bestquality_width, &bestquality, &bestquality_max);
// now we have a naive steering point. the way to it might lead
// us offroad, however.
int steering_point=find_ideal_line(img.cols,img.rows, contour, origin_point, contour_map, bestquality_j);
draw_it_all(drawing, contours, hierarchy, first_nonbottom_idx, contour, angles, angle_derivative,bestquality_j,bestquality_width,bestquality_max,steering_point, origin_point);
cout << bestquality << "\t" << bestquality_max<<endl;
delete [] angle_derivative;
delete [] angles;
*confidence = (bestquality-1.0) / 3.0;
if (*confidence<0.0) *confidence=0;
if (*confidence>1.0) *confidence=1.0;
return steering_point;
}
#define AREA_HISTORY 10
int alertcnt=21;
int main(int argc, char* argv[])
{
if (argc!=2) {printf("usage: %s videofile\n",argv[0]); exit(1);}
VideoCapture capture(argv[1]);
if (!capture.isOpened())
{
cout << "couldn't open file" << endl;
exit(1);
}
Mat erode_kernel=circle_mat(10);
Mat frame;
capture >> frame;
Mat thres(frame.rows, frame.cols, CV_8UC1);
Mat tmp(frame.rows, frame.cols, CV_8UC1);
int** contour_map;
contour_map=new int*[frame.cols];
for (int i=0;i<frame.cols;i++)
contour_map[i]=new int[frame.rows];
int area_history[AREA_HISTORY];
for (int i=0;i<AREA_HISTORY;i++) area_history[i]=1;
int area_history_ptr=0;
int area_history_sum=AREA_HISTORY;
cout << endl<<endl<<endl;
int frameno=0;
while (1)
{
capture >> frame;
if (frameno<190)
{
frameno++;
continue;
}
cvtColor(frame, tmp, CV_RGB2GRAY);
threshold(tmp, thres, 132, 255, THRESH_BINARY);
dilate(thres,tmp,Mat());
erode(tmp,thres,Mat());
erode(thres,tmp,Mat());
dilate(tmp,thres,Mat());
int area_abs;
double area_ratio = only_retain_largest_region(thres, &area_abs);
dilate(thres, tmp, erode_kernel);
erode(tmp, thres, erode_kernel);
Mat drawing;
double confidence;
find_steering_point(thres, Point(thres.cols/2, thres.rows-2*thres.rows/5), contour_map, drawing, &confidence);
area_history_sum-=area_history[area_history_ptr];
area_history[area_history_ptr]=area_abs;
area_history_sum+=area_abs;
area_history_ptr=(area_history_ptr+1)%AREA_HISTORY;
int prev_area=area_history_sum/AREA_HISTORY;
cout << "area = "<<area_abs<<",\tratio="<< area_ratio <<" \n" <<
"prev area = "<<prev_area<<",\tchange="<< (100*area_abs/prev_area -100) <<"%\n"<<flush;
cout << "confidence = "<<confidence<<endl;
if (area_ratio>0.1)
{
cout << "\nALERT: possibly split road!\n\n\n" << flush;
alertcnt=0;
}
if (abs(100*area_abs/prev_area -100) >=10)
{
cout << "\nALERT: too fast road area change!\n\n\n" << flush;
alertcnt=0;
}
alertcnt++;
if (alertcnt == 20) cout << "\n\n\n\n\n\n------------------------\n\n\n";
cout << "frame #"<<frameno<<endl;
imshow("input",thres);
imshow("drawing",drawing);
// waitKey(100);
waitKey();
frameno++;
}
}
|