1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
#include <cmath>
#include "note.h"
#include "globals.h"
#include "defines.h"
using namespace std;
//this function returns the smallest phase_init possible for a
//given custom_wave which is greater or equal than PHASE_INIT
inline fixed_t init_custom_osc_phase(int len, fixed_t sr)
{
return ( (fixed_t(ceil( float(PHASE_INIT) * sr / len / ONE )) *len << (2*SCALE)) / sr);
}
Note::Note(int n, float v, program_t &prg, jack_nframes_t pf, fixed_t pb, int prg_no, float vol_fac)
{
curr_prg=&prg;
n_oscillators=prg.n_osc;
pfactor.out=new fixed_t [n_oscillators];
pfactor.freq_env_amount=new fixed_t [n_oscillators];
pfactor.fm=new fixed_t* [n_oscillators];
for (int i=0;i<n_oscillators;i++)
pfactor.fm[i]=new fixed_t [n_oscillators];
freqfactor_factor=new double[n_oscillators];
envval=new fixed_t[n_oscillators];
oscval=new fixed_t[n_oscillators];
old_oscval=new fixed_t[n_oscillators];
for (int i=0;i<n_oscillators;i++)
envval[i]=oscval[i]=old_oscval[i]=0;
envelope=new Envelope*[n_oscillators];
factor_env=new Envelope*[n_oscillators];
for (int i=0;i<n_oscillators;i++)
{
envelope[i]=new Envelope(prg.env_settings[i], envelope_update_frames);
factor_env[i]=new Envelope(prg.osc_settings[i].freq_env, envelope_update_frames);
}
oscillator=new oscillator_t[n_oscillators];
orig.oscillator=new oscillator_t[n_oscillators];
copy(&prg.osc_settings[0],&prg.osc_settings[n_oscillators],oscillator);
copy(&prg.osc_settings[0],&prg.osc_settings[n_oscillators],orig.oscillator);
//initalize oscillator.phase to multiples of their wave resolution
//this has the following effect: the actual phase, i.e. the index
//in the wave-array (wave[phase]) doesn't change, because
// (n * wave_res) % wave_res is always zero.
//however, if doing phase modulation, it's very unlikely now that
//phase ever becomes negative (which would cause the program to
//segfault, or at least to produce noise). this saves an additional
//(slow) sanity check for the phase.
for (int i=0;i<n_oscillators;i++)
{
if (oscillator[i].custom_wave)
oscillator[i].phase=init_custom_osc_phase(oscillator[i].custom_wave->wave_len, oscillator[i].custom_wave->samp_rate);
else
oscillator[i].phase=ONE * PHASE_INIT;
}
do_ksl();
filter_params=prg.filter_settings;
orig.filter_params=prg.filter_settings;
if (filter_params.enabled)
{
filter_envelope=new Envelope(filter_params.env_settings,1);
filter_update_counter=filter_update_frames;
}
env_frame_counter=envelope_update_frames; //force update in first frame
sync_factor=prg.sync_factor;
sync_phase=0;
portamento_frames=0;
set_portamento_frames(pf);
set_note(n);
freq=dest_freq;
set_vel(v);
set_vol_factor(vol_fac);
pitchbend=pb;
program=prg_no;
}
Note::~Note()
{
int i;
for (i=0;i<n_oscillators;i++)
{
delete [] oscillator[i].fm_strength;
delete envelope[i];
delete factor_env[i];
delete [] pfactor.fm[i];
}
delete [] oscillator;
delete [] envelope;
delete [] factor_env;
delete [] freqfactor_factor;
delete [] envval;
delete [] oscval;
delete [] old_oscval;
delete [] pfactor.out;
delete [] pfactor.freq_env_amount;
delete [] pfactor.fm;
}
void Note::recalc_factors()
{
pfactor.filter_env=calc_pfactor(curr_prg->pfactor.filter_env, vel);
pfactor.filter_res=calc_pfactor(curr_prg->pfactor.filter_res, vel);
pfactor.filter_offset=calc_pfactor(curr_prg->pfactor.filter_offset, vel);
for (int i=0;i<n_oscillators;i++)
{
pfactor.out[i]=calc_pfactor(curr_prg->pfactor.out[i], vel) * volume_factor;
pfactor.freq_env_amount[i]=calc_pfactor(curr_prg->pfactor.freq_env_amount[i], vel);
for (int j=0;j<n_oscillators;j++)
pfactor.fm[i][j]=calc_pfactor(curr_prg->pfactor.fm[i][j], vel);
}
}
void Note::apply_pfactor()
{
//apply pfactor to all necessary parameters
for (int i=0;i<n_oscillators;i++)
{
oscillator[i].output=orig.oscillator[i].output*pfactor.out[i] >>SCALE;
oscillator[i].freq_env_amount=orig.oscillator[i].freq_env_amount*pfactor.freq_env_amount[i] /ONE; //because it's a float
for (int j=0;j<n_oscillators;j++)
oscillator[i].fm_strength[j]=orig.oscillator[i].fm_strength[j]*pfactor.fm[i][j] >>SCALE;
}
filter_params.env_amount=orig.filter_params.env_amount*pfactor.filter_env /ONE;
filter_params.freqfactor_offset=orig.filter_params.freqfactor_offset*pfactor.filter_offset /ONE;
filter_params.resonance=orig.filter_params.resonance*pfactor.filter_res /ONE;
}
void Note::set_param(const parameter_t &p, fixed_t v) //ACHTUNG:
{
//wenn das verändert wird, muss auch program_t::set_param verändert werden!
switch(p.par)
{
case ATTACK: envelope[p.osc]->set_attack(v*samp_rate >>SCALE); break;
case DECAY: envelope[p.osc]->set_decay(v*samp_rate >>SCALE); break;
case SUSTAIN: envelope[p.osc]->set_sustain(v); break;
case RELEASE: envelope[p.osc]->set_release(v*samp_rate >>SCALE); break;
case HOLD: envelope[p.osc]->set_hold(v!=0); break;
case KSR: oscillator[p.osc].ksr=float(v)/ONE; break;
case KSL: oscillator[p.osc].ksl=float(v)/ONE; break;
case FACTOR: orig.oscillator[p.osc].factor=v; oscillator[p.osc].factor=v*freqfactor_factor[p.osc]; break;
case MODULATION: orig.oscillator[p.osc].fm_strength[p.index]=v; apply_pfactor(); break;
case OUTPUT: orig.oscillator[p.osc].output=v; apply_pfactor(); break;
case TREMOLO: oscillator[p.osc].tremolo_depth=v; break;
case TREM_LFO: oscillator[p.osc].tremolo_lfo=v; break;
case VIBRATO: oscillator[p.osc].vibrato_depth=v; break;
case VIB_LFO: oscillator[p.osc].vibrato_lfo=v; break;
case WAVEFORM: oscillator[p.osc].waveform=v; break;
case SYNC: oscillator[p.osc].sync=(v!=0); break;
case FILTER_ENABLED: output_note("NOTE: cannot enable filter in playing notes"); break;
case FILTER_ENV_AMOUNT: orig.filter_params.env_amount=float(v)/ONE; apply_pfactor(); break;
case FILTER_ATTACK:
if (filter_params.enabled)
filter_envelope->set_attack(v*samp_rate/filter_update_frames >>SCALE);
else
output_note("NOTE: cannot set filter-attack when filter is disabled");
break;
case FILTER_DECAY:
if (filter_params.enabled)
filter_envelope->set_decay(v*samp_rate/filter_update_frames >>SCALE);
else
output_note("NOTE: cannot set filter-decay when filter is disabled");
break;
case FILTER_SUSTAIN:
if (filter_params.enabled)
filter_envelope->set_sustain(v);
else
output_note("NOTE: cannot set filter-sustain when filter is disabled");
break;
case FILTER_RELEASE:
if (filter_params.enabled)
filter_envelope->set_release(v*samp_rate/filter_update_frames >>SCALE);
else
output_note("NOTE: cannot set filter-release when filter is disabled");
break;
case FILTER_HOLD:
if (filter_params.enabled)
filter_envelope->set_hold(v!=0);
else
output_note("NOTE: cannot set filter-hold when filter is disabled");
break;
case FILTER_OFFSET: orig.filter_params.freqfactor_offset=float(v)/ONE; apply_pfactor(); break;
case FILTER_RESONANCE: orig.filter_params.resonance=float(v)/ONE; apply_pfactor(); break;
case FILTER_TREMOLO: filter_params.trem_strength=v; break;
case FILTER_TREM_LFO: filter_params.trem_lfo=v; break;
case SYNC_FACTOR: sync_factor=v; break;
case FREQ_ATTACK: factor_env[p.osc]->set_attack(v*samp_rate >>SCALE); break;
case FREQ_DECAY: factor_env[p.osc]->set_decay(v*samp_rate >>SCALE); break;
case FREQ_SUSTAIN: factor_env[p.osc]->set_sustain(v); break;
case FREQ_RELEASE: factor_env[p.osc]->set_release(v*samp_rate >>SCALE); break;
case FREQ_HOLD: factor_env[p.osc]->set_hold((v!=0)); break;
case FREQ_ENV_AMOUNT: orig.oscillator[p.osc].freq_env_amount=double(v)/ONE; apply_pfactor(); break;
default: throw string("trying to set an unknown parameter");
}
}
bool Note::still_active()
{
for (int i=0; i<n_oscillators; i++)
if ((oscillator[i].output>0) && (envelope[i]->still_active()))
return true;
return false;
}
//this function must still work properly if called multiple times
//when called a second time, there shall be no effect
void Note::release_quickly(jack_nframes_t maxt)
{
for (int i=0;i<n_oscillators;i++)
{
if (envelope[i]->get_release() > maxt)
envelope[i]->set_release(maxt);
envelope[i]->release_key();
// i don't release the filter-env because lacking to do so
// does not generate a hearable difference (or would you hear
// when in the last half second a tone is filtered or not?)
}
}
void Note::release()
{
for (int i=0;i<n_oscillators;i++)
{
envelope[i]->release_key();
factor_env[i]->release_key();
}
if (filter_params.enabled)
filter_envelope->release_key();
}
void Note::reattack()
{
for (int i=0;i<n_oscillators;i++)
{
envelope[i]->reattack();
factor_env[i]->reattack();
}
if (filter_params.enabled)
filter_envelope->reattack();
}
void Note::do_ksl()
{ //osc.ksl is in Bel/octave (i.e. dB/10)
//if ksl=1, this means that for each octave the loudness
//decreases by half
for (int i=0;i<n_oscillators;i++)
{
if (oscillator[i].ksl==0)
envelope[i]->set_max(ONE);
else
envelope[i]->set_max( fixed_t(double(ONE) / pow(freq>>SCALE, oscillator[i].ksl)) );
}
}
void Note::do_ksr()
{
for (int i=0;i<n_oscillators;i++)
envelope[i]->set_ratefactor(1.0 / pow(freq>>SCALE, oscillator[i].ksr));
}
fixed_t Note::get_sample()
{
if (freq!=dest_freq)
{
// the div.by.zero if p_frames=0 is avoided because then the
// if-condition below is always true
if (portamento_t>=portamento_frames)
freq=dest_freq;
else //will only happen if p_t < p_frames -> p_frames is always > 0 -> div. ok
freq = old_freq + (dest_freq-old_freq)*portamento_t/portamento_frames;
do_ksl();
portamento_t++;
}
fixed_t actual_freq=freq*pitchbend >>SCALE;
fixed_t *temp;
temp=old_oscval; //swap the current and old oscval-pointers
old_oscval=oscval;
oscval=temp;
fixed_t fm=0;
fixed_t out=0;
int i,j;
if (sync_factor)
{
sync_phase+=(actual_freq*sync_factor/samp_rate) >> SCALE;
if (sync_phase >= ONE)
{
sync_phase-=ONE;
for (i=0;i<n_oscillators;i++)
if (oscillator[i].sync)
{
if (oscillator[i].custom_wave)
oscillator[i].phase=init_custom_osc_phase(oscillator[i].custom_wave->wave_len, oscillator[i].custom_wave->samp_rate);
else
oscillator[i].phase=ONE * PHASE_INIT;
}
}
}
env_frame_counter++;
if (env_frame_counter>=envelope_update_frames)
{
env_frame_counter=0;
for (i=0;i<n_oscillators;i++)
{
envval[i]=envelope[i]->get_level();
freqfactor_factor[i]=pow(2.0, oscillator[i].freq_env_amount*(factor_env[i]->get_level() - factor_env[i]->get_sustain())/ONE);
oscillator[i].factor=orig.oscillator[i].factor*freqfactor_factor[i];
}
}
for (i=0;i<n_oscillators;i++)
{
fm=0;
for (j=0;j<n_oscillators;j++)
if (oscillator[i].fm_strength[j]!=0) //osc_j affects osc_i (FM)
fm+=old_oscval[j]*oscillator[i].fm_strength[j];
fm=fm>>SCALE;
//phase increases in one second, i.e. in samp_rate frames, by the osc's freq
if (oscillator[i].vibrato_depth!=0)
oscillator[i].phase+=( (curr_lfo[oscillator[i].vibrato_lfo][oscillator[i].vibrato_depth]*actual_freq >>SCALE)*oscillator[i].factor/samp_rate)>>SCALE;
else
oscillator[i].phase+=(actual_freq*oscillator[i].factor/samp_rate)>>SCALE;
if (oscillator[i].custom_wave)
{
//sampler
custom_wave_t *cw=oscillator[i].custom_wave;
oscval[i]=cw->wave[ ((oscillator[i].phase + fm) * cw->samp_rate >>(2*SCALE)) % cw->wave_len ] * envval[i] >> (SCALE);
}
else
{
//normal oscillator
oscval[i]=wave[oscillator[i].waveform][ ((oscillator[i].phase + fm) * WAVE_RES >>SCALE) % WAVE_RES ] * envval[i] >> (SCALE);
}
if (oscillator[i].tremolo_depth!=0)
oscval[i]=oscval[i]* curr_lfo[oscillator[i].tremolo_lfo][oscillator[i].tremolo_depth] >> SCALE;
if (oscillator[i].output!=0)
out+=oscillator[i].output*oscval[i];
}
out=out>>SCALE;
if (filter_params.enabled)
{
filter_update_counter++;
if (filter_update_counter>=filter_update_frames)
{
filter_update_counter=0;
float cutoff= float(actual_freq)/ONE *
float(curr_lfo[filter_params.trem_lfo][filter_params.trem_strength])/ONE *
( filter_params.freqfactor_offset + filter_envelope->get_level() * filter_params.env_amount / float(ONE) );
filter.set_params( cutoff, filter_params.resonance );
}
fixed_t tmp=out;
filter.process_sample(&tmp);
return tmp;
}
else
{
return out;
}
}
void Note::destroy()
{
delete this;
}
|