1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
import math
from interval_utils import *
import gui
import random
class Strategy:
def __init__(self, c):
self.target = (0,0)
self.has_target = False
self.target_cell = None
self.color = (0,0,0)
self.c = c
def get_my_smallest(self):
return sorted(self.c.player.own_cells, key = lambda x: x.mass)[0]
def dist(self, cell):
return math.sqrt((cell.pos[0]-self.c.player.center[0])**2 + (cell.pos[1]-self.c.player.center[1])**2)
def edible(self, cell):
return ((cell.is_food) or (cell.mass <= self.get_my_smallest().mass * 0.75)) and not (cell.is_virus)
def threat(self, cell):
if cell.is_virus and (cell.mass <= self.get_my_smallest().mass * 0.75):
return True
elif (cell.mass <= self.get_my_smallest().mass * 1.25):
return True
else:
return False
def rival(self, cell, food):
if cell.is_virus or cell.is_food: return False
if cell.cid in self.c.player.own_ids: return False
if cell.mass < 1.25*self.get_my_smallest().mass:
return food.is_food or cell.size > 1.25*food.size
else:
return False
def splitkiller(self, cell):
return not cell.is_virus and not cell.is_food and cell.mass > 1.25*2*self.get_my_smallest().mass
def nonsplitkiller(self, cell):
return not cell.is_virus and not cell.is_food and 1.20*self.get_my_smallest().mass < cell.mass and cell.mass < 1.25*2*self.get_my_smallest().mass
def quality(self, cell):
dd_sq = max((cell.pos[0]-self.c.player.center[0])**2 + (cell.pos[1]-self.c.player.center[1])**2,0.001)
sigma = 500
dist_score = -math.exp(-dd_sq/(2*sigma**2))
rivals = filter(lambda r : self.rival(r,cell), self.c.world.cells.values())
splitkillers = filter(self.splitkiller, self.c.world.cells.values())
nonsplitkillers = filter(self.nonsplitkiller, self.c.world.cells.values())
rival_score = 0
for r in rivals:
dd_sq = max(0.001, (r.pos[0]-cell.pos[0])**2 + (r.pos[1]-cell.pos[1])**2)
sigma = r.size + 100
rival_score += math.exp(-dd_sq/(2*sigma**2))
splitkill_score = 0
for s in splitkillers:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = (500+2*s.size)
splitkill_score += math.exp(-dd_sq/(2*sigma**2))
nonsplitkill_score = 0
for s in nonsplitkillers:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = (300+s.size)
nonsplitkill_score += math.exp(-dd_sq/(2*sigma**2))
density_score = 0
sigma = 300
for f in filter(lambda c : c.is_food and c!=cell, self.c.world.cells.values()):
dd_sq = (f.pos[0]-cell.pos[0])**2 + (f.pos[1]-cell.pos[1])**2
density_score -= math.exp(-dd_sq/(2*sigma**2))
wall_score = 0
wall_dist = min( cell.pos[0]-self.c.world.top_left[1], self.c.world.bottom_right[1]-cell.pos[0], cell.pos[1]-self.c.world.top_left[0], self.c.world.bottom_right[0]-cell.pos[1] )
sigma = 100
wall_score = math.exp(-wall_dist**2/(2*sigma**2))
return 2.5*dist_score + 0.2*rival_score + nonsplitkill_score + 5*splitkill_score + 0.1*density_score + 5*wall_score
##print (density_score)
#return density_score
def weight_cell(self, cell):
df = (10/self.dist(cell))
if self.edible(cell):
quality = self.quality(cell)
if cell.is_food:
return 1 + cell.mass * df * quality
else:
mf = 1 / ((self.get_my_smallest().mass * 0.75) + 1) - cell.mass
return cell.mass * df * quality * mf
elif self.threat(cell):
if cell.is_virus:
return -cell.mass * df * 100
else:
return -cell.mass * df
else:
return 0
def weight_cells(self, cells):
weight = 0
for cell in cells:
if cell not in self.c.player.own_cells: #probably unnecessary but list filtering didnt work
weight += self.weight_cell(cell)
return weight
def process_frame(self):
intervals = []
last = math.radians(45)
num = 36
for i in range(num):
ang = last + math.radians((360/num))
intervals.append([last, ang])
last = ang
cells = list(map(lambda x: get_cells_in_interval(self.c.player.center, x, self.c.world.cells.values()), intervals))
cells = list(filter(lambda x: x not in self.c.player.own_cells, cells))
weights = list(map(lambda x: self.weight_cells(x), cells))
zipped = zip(intervals, weights)
zipped = sorted(zipped, key = lambda x: x[1], reverse = True)
bi = zipped[0][0]
ang = bi[0] + ((bi[1] - bi[0]) / 2)
tx = self.c.player.center[0] + (200*math.cos(ang))
ty = self.c.player.center[1] + (200*math.sin(ang))
self.target = (tx, ty)
def gradient(value):
return (255-value, value, 0)
def mapped_gradient(min, max, value):
i = max - min
s = 255/i
v = abs(int(value*s))
return gradient(v)
for z in zipped:
gui.draw_arc(self.c.player.center, 200, z[0], mapped_gradient(zipped[0][1], zipped[-1][1], z[1]))
gui.draw_line(self.c.player.center, self.target, (255,0,0))
gui.draw_arc(self.c.player.center, 210, bi, (255,0,0))
return self.target
|