1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
# Copyright (c) 2015, Florian Jung and Timm Weber
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
from interval_utils import *
import random
import nogui
import mechanics
friendly_players=["Windfisch","windfisch","Cyanide","cyanide"] +\
["Midna","Nayru","Farore","Din","Ezelo","Navi","Zelda","Tetra","Link","Ciela","Linebeck","Salia","Epona","Shiek"] +\
["Vaati","Ganon","Ganondorf","Ghirahim","Agahnim"]
class Strategy:
def __init__(self, c, gui=None):
self.target = (0,0)
self.target_type = None
self.target_cell = None
self.color = (0,0,0)
self.c = c
self.do_approach_friends = True
if gui != None:
self.gui = gui
else:
self.gui = nogui
def get_my_smallest(self):
return sorted(self.c.player.own_cells, key = lambda x: x.mass)[0]
def dist(self, cell):
return math.sqrt((cell.pos[0]-self.c.player.center[0])**2 + (cell.pos[1]-self.c.player.center[1])**2)
def edible(self, cell):
return ((cell.is_food) or (cell.mass <= self.get_my_smallest().mass * 0.75)) and not (cell.is_virus)
def threat(self, cell):
if cell.is_virus and (cell.mass <= self.get_my_smallest().mass * 0.75):
return True
elif (cell.mass <= self.get_my_smallest().mass * 1.25):
return True
else:
return False
def rival(self, cell, food):
if cell.is_virus or cell.is_food: return False
if cell.cid in self.c.player.own_ids: return False
if cell.mass < 1.25*self.get_my_smallest().mass:
return food.is_food or cell.size > 1.25*food.size
else:
return False
def splitkiller(self, cell):
return not cell.is_virus and not cell.is_food and cell.mass+20 > 1.25*2*self.get_my_smallest().mass and cell.mass / 15. < self.c.player.total_mass
def hugecell(self, cell):
return not cell.is_virus and not cell.is_food and cell.mass / 15. >= self.c.player.total_mass
def nonsplitkiller(self, cell):
return not cell.is_virus and not cell.is_food and 1.20*self.get_my_smallest().mass < cell.mass and cell.mass+20 < 1.25*2*self.get_my_smallest().mass
def quality(self, cell, cells, myspeed):
dd_sq = max((cell.pos[0]-self.c.player.center[0])**2 + (cell.pos[1]-self.c.player.center[1])**2,0.001)
sigma = 500 * max(cell.mass,1) # TODO FIXME don't try to eat running away cells
if mechanics.speed(cell) - myspeed >= 0:
sigma = sigma / 3 / math.exp((mechanics.speed(cell)-myspeed)/10)
dist_score = -math.exp(-dd_sq/(2*sigma**2))
rivals = filter(lambda r : self.rival(r,cell), cells)
hugecells = filter(self.hugecell, cells)
splitkillers = filter(self.splitkiller, cells)
nonsplitkillers = filter(self.nonsplitkiller, cells)
rival_score = 0
for r in rivals:
dd_sq = max(0.001, (r.pos[0]-cell.pos[0])**2 + (r.pos[1]-cell.pos[1])**2)
sigma = r.size + 100
rival_score += math.exp(-dd_sq/(2*sigma**2))
hugecell_score = 0
for s in hugecells:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = s.size + 10
hugecell_score += math.exp(-dd_sq/(2*sigma**2))
splitkill_score = 0
for s in splitkillers:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = s.size + 650 + 250
splitkill_score += math.exp(-dd_sq/(2*sigma**2))
nonsplitkill_score = 0
for s in nonsplitkillers:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = (75+s.size) + 250
nonsplitkill_score += math.exp(-dd_sq/(2*sigma**2))
density_score = 0
sigma = 300
#for f in filter(lambda c : c.is_food and c!=cell, self.c.world.cells.values()):
# dd_sq = (f.pos[0]-cell.pos[0])**2 + (f.pos[1]-cell.pos[1])**2
# density_score -= math.exp(-dd_sq/(2*sigma**2))
wall_score = 0
wall_dist = min( cell.pos[0]-self.c.world.top_left[1], self.c.world.bottom_right[1]-cell.pos[0], cell.pos[1]-self.c.world.top_left[0], self.c.world.bottom_right[0]-cell.pos[1] )
sigma = 100
wall_score = math.exp(-wall_dist**2/(2*sigma**2))
return 0.5*dist_score + 0.2*rival_score + 5.0*hugecell_score + 5.0*nonsplitkill_score + 15*splitkill_score + 0.1*density_score + 5*wall_score
##print (density_score)
#return density_score
def process_frame(self):
runaway = False
my_smallest = min(self.c.player.own_cells, key=lambda cell : cell.mass)
my_largest = max(self.c.player.own_cells, key=lambda cell : cell.mass)
cells = filter(lambda r : not r.is_food and not r.is_virus, self.c.world.cells.values())
friendly_cells = list(filter(lambda c : c.is_virus or c.name in friendly_players, self.c.world.cells.values()))
if friendly_cells:
dist_to_friend = min(map(lambda c : (self.c.player.center-c.pos).len() - max(my_largest.size, c.size), friendly_cells))
else:
dist_to_friend = float('inf')
if dist_to_friend < 20 or my_largest.mass < 36:
if self.do_approach_friends: print("not approaching friends")
self.do_approach_friends = False
elif dist_to_friend > 200 and my_largest.mass > 36 + 10*16:
if not self.do_approach_friends: print("approaching friends")
self.do_approach_friends = True
if friendly_cells and self.do_approach_friends:
friend_to_feed = max(friendly_cells, key=lambda c:c.mass)
if friend_to_feed.mass < 1.25 * my_largest.mass:
print("friend too small")
friend_to_feed = None
if friend_to_feed:
self.gui.hilight_cell(friend_to_feed, (255,255,255),(255,127,127),30)
self.target_cell = friend_to_feed
self.target_type = 'friend'
if self.do_approach_friends:
for c in self.c.player.own_cells:
self.gui.hilight_cell(c, (255,255,255), (255,127,127), 20)
# can this cell feed that cell?
# "False" means "No, definitely not"
# "True" means "Maybe"
def can_feed(this, that):
if that.is_food or that.is_ejected_mass or that.size < 43: # too small cells cannot eat the ejected mass
return False
relpos = this.pos-that.pos
dist = relpos.len()
if dist == 0 or dist >= 700 + this.size + that.size:
return False
return check_cell_in_interval(this.pos, that, (this.movement_angle - 10*math.pi/180, this.movement_angle + 10*math.pi/180))
success_rate = 0
for my_cell in self.c.player.own_cells:
try:
my_cell.movement_angle
except AttributeError:
print("cannot calculate shoot angle, too few backlog")
continue
# check if ejecting mass would feed a friend
possibly_feedable_cells = list(filter(lambda c : can_feed(my_cell, c), self.c.world.cells.values()))
possibly_feedable_cells.sort(key = lambda c : (my_cell.pos - c.pos).len())
good_intervals = []
for feedable in possibly_feedable_cells:
self.gui.hilight_cell(feedable, (255,192,127), (127,127,255))
if feedable not in friendly_cells:
break
good_intervals += canonicalize_angle_interval( interval_occupied_by_cell(my_cell.pos, feedable) )
good_intervals = merge_intervals(good_intervals)
area = interval_area( intersection(good_intervals, canonicalize_angle_interval((my_cell.movement_angle - mechanics.eject_delta*math.pi/180, my_cell.movement_angle + mechanics.eject_delta*math.pi/180))) )
success_rate += area / (2*mechanics.eject_delta*math.pi/180) / len(list(self.c.player.own_cells))
self.gui.draw_bar(((100,40),(500,24)), success_rate, thresh=.80, color=(0,0,127))
if success_rate >= 0.80:
self.c.send_shoot()
# enemy/virus/friend-we-would-kill avoidance
forbidden_intervals = []
for cell in self.c.world.cells.values():
relpos = ((cell.pos[0]-self.c.player.center[0]),(cell.pos[1]-self.c.player.center[1]))
dist = math.sqrt(relpos[0]**2+relpos[1]**2)
# find out the allowed minimum distance
allowed_dist = None
if cell.is_virus:
if cell.mass < my_largest.mass:
allowed_dist = cell.size+2
else:
allowed_dist = "don't care"
elif cell in friendly_cells:
if 1.25 * my_largest.mass > cell.mass: # we're dangerous to our friends
allowed_dist = my_largest.size + 40
elif (cell not in self.c.player.own_cells and not cell.is_virus and not cell.is_ejected_mass and not cell.is_food) and cell.mass + 20 > 1.25 * my_smallest.mass: # our enemy is, or will be dangerous to us
if (cell.mass + 20) / 2 < 1.25 * my_smallest.mass:
# they can't splitkill us (soon)
allowed_dist = cell.size + 75
elif cell.mass / 15. < self.c.player.total_mass:
# they can and they will splitkill us
allowed_dist = 650 + cell.size
else:
# we're too small, not worth a splitkill. they have absolutely no
# chance to chase us
allowed_dist = cell.size + 10
else:
allowed_dist = "don't care"
if allowed_dist != "don't care" and dist < allowed_dist:
try:
angle = math.atan2(relpos[1],relpos[0])
corridor_halfwidth = math.asin(min(1, cell.size / dist))
forbidden_intervals += canonicalize_angle_interval((angle-corridor_halfwidth, angle+corridor_halfwidth))
runaway = True
except:
print("TODO FIXME: need to handle enemy cell which is in our centerpoint!")
print("dist=%.2f, allowed_dist=%.2f" % (dist, allowed_dist))
# wall avoidance
if self.c.player.center[0] < self.c.world.top_left[1]+(self.c.player.total_size*2):
forbidden_intervals += [(0.5*pi, 1.5*pi)]
if self.c.player.center[0] > self.c.world.bottom_right[1]-(self.c.player.total_size*2):
forbidden_intervals += [(0,0.5*pi), (1.5*pi, 2*pi)]
if self.c.player.center[1] < self.c.world.top_left[0]+(self.c.player.total_size*2):
forbidden_intervals += [(pi, 2*pi)]
if self.c.player.center[1] > self.c.world.bottom_right[0]-(self.c.player.total_size*2):
forbidden_intervals += [(0, pi)]
# if there's actually an enemy to avoid:
if (runaway):
# find the largest non-forbidden interval, and run into this direction.
forbidden_intervals = merge_intervals(forbidden_intervals)
allowed_intervals = invert_angle_intervals(forbidden_intervals)
try:
(a,b) = find_largest_angle_interval(allowed_intervals)
except:
print("TODO FIXME: need to handle no runaway direction being available!")
(a,b) = (0,0)
runaway_angle = (a+b)/2
runaway_x, runaway_y = (self.c.player.center[0]+int(100*math.cos(runaway_angle))), (self.c.player.center[1]+int(100*math.sin(runaway_angle)))
self.target = (runaway_x, runaway_y)
self.target_type = None
self.target_cell = None
self.color = (255,0,0)
# a bit of debugging information
for i in forbidden_intervals:
self.gui.draw_arc(self.c.player.center, self.c.player.total_size+10, i, (255,0,255))
# if however there's no enemy to avoid, try to feed a friend. or chase food or fly randomly around
else:
if self.target_cell != None:
self.target = tuple(self.target_cell.pos)
# check if target went out of sight, or became infeasible
if self.target_cell not in self.c.world.cells.values() or (not self.edible(self.target_cell) and not self.target_cell in friendly_cells):
self.target_cell = None
self.target_type = None
elif self.target == tuple(self.c.player.center):
self.target_type = None
print("Reached random destination")
if not self.target_type == 'friend': # i.e. None, random or food
food = list(filter(self.edible, self.c.world.cells.values()))
myspeed = mechanics.speed(my_largest)
food = sorted(food, key = lambda c : self.quality(c, cells, myspeed))
if len(food) > 0:
food_candidate = food[0]
if self.target_type == None or self.target_type == 'random' or (self.target_type == 'food' and self.quality(food_candidate, cells, myspeed) < self.quality(self.target_cell, cells, myspeed)-1):
if self.target_type == 'food':
print("abandoning food of value %.3f for %.3f" % (self.quality(self.target_cell, cells, myspeed),self.quality(food_candidate, cells, myspeed)))
self.target_cell = food_candidate
self.target = (self.target_cell.pos[0], self.target_cell.pos[1])
self.target_type = 'food'
self.color = (0,0,255)
if self.target == None:
rx = self.c.player.center[0] + random.randrange(-400, 401)
ry = self.c.player.center[1] + random.randrange(-400, 401)
self.target = (rx, ry)
self.target_type = 'random'
self.color = (0,255,0)
print("Nothing to do, heading to random targetination: " + str((rx, ry)))
# more debugging
self.gui.draw_line(self.c.player.center, self.target, self.color)
return self.target
|