1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
import math
from agarnet.agarnet.vec import Vec
"""
pathfinding works by performing an A* search on a graph, built as follows:
there is a equally spaced rectangular grid, where each node is connected
to its 8 neighbours, with the appropriate euclidean distance.
additionally, for each food or ejected mass blob, a node is created. they're
additionally, for each food or ejected mass blob, a node is created. they're
connected by straight lines with each other, if no enemy cell is in between.
those "wormhole connections" have a cost of less than the euclidean distance.
"""
"""class Graph:
def __init__(self, center, width, height, spacing):
self.center = center
self.spacing = spacing
self.width = width
self.height = height
def nearest_node(self, pt):
rel = pt - self.center
rel.x = round(rel.x / spacing)
rel.y = round(rel.x / spacing)
nearest_blob = min(blobs, key = lambda blob : (blob.pos - pt).len())
dist_to_blob = (nearest_blob.pos - pt).len()
dist_to_grid = (spacing*rel + self.center - pt).len()
if dist_to_grid < dist_to_blob:
return self.get_gridnode(rel.x, rel.y)
else:
return self.get_blobnode(nearest_blob)
"""
class Graph:
def __init__(self, grid, blobs):
self.grid = grid
self.blobs = blobs
# A* code taken and adapted from https://gist.github.com/jamiees2/5531924
class Node:
def __init__(self,value,point,point_in_grid, is_in_wormhole_plane, graph, cell):
self.value = value
self.point = point
self.point_in_grid = point_in_grid
self.parent = None
self.H = 0
self.G = 0
self.graph = graph
self.is_in_wormhole_plane = is_in_wormhole_plane
self.find_near_wormholes(50)
def find_near_wormholes(self, radius):
self.near_wormholes = list(filter(lambda blob : (self.point - blob.point).len() < radius, self.graph.blobs))
def move_cost(self,other):
dist = distance(self, other)
if not (self.is_in_wormhole_plane or other.is_in_wormhole_plane):
# assert other in siblings(self,grid). otherwise this makes no sense
#return 5*(distance(self, other) + (self.value + other.value)/2)
return 5*dist
else:
return max(dist, 5*dist - 500)
def siblings(self):
x,y = self.point_in_grid
links = [self.graph.grid[d[0]][d[1]] for d in [(x-1, y),(x-1,y-1),(x,y - 1),(x+1,y-1),(x+1,y),(x+1,y+1),(x,y + 1),(x-1,y+1)]]
return [link for link in links if link.value != None] + self.near_wormholes
def distance(point,point2):
return math.sqrt((point.point[0] - point2.point[0])**2 + (point.point[1]-point2.point[1])**2)
def aStar(start, goal, grid):
print("aStar("+str(start.point)+"="+str(start.point_in_grid)+", "+str(goal.point)+"="+str(goal.point_in_grid)+")")
openset = set()
closedset = set()
current = start
openset.add(current)
while openset:
#Find the item in the open set with the lowest G + H score
current = min(openset, key=lambda o:o.G + o.H)
#If it is the item we want, retrace the path and return it
if current == goal:
path = []
while current.parent:
path.append(current)
current = current.parent
path.append(current)
return path[::-1]
openset.remove(current)
closedset.add(current)
for node in current.siblings():
if node in closedset:
continue
if node in openset:
#Check if we beat the G score
new_g = current.G + current.move_cost(node)
if node.G > new_g:
#If so, update the node to have a new parent
node.G = new_g
node.parent = current
else:
#If it isn't in the open set, calculate the G and H score for the node
node.G = current.G + current.move_cost(node)
node.H = distance(node, goal)
node.parent = current
openset.add(node)
raise ValueError('No Path Found')
grid_radius=int(1100/30)*30
grid_density=30
class PathfindingTesterStrategy:
def __init__(self, c, gui):
self.c = c
self.path = None
self.gui = gui
def build_grid(self):
graph = Graph(None, [])
graph.blobs = [ Node(0, c.pos, Vec( int((c.pos.x - self.c.player.center.x + grid_radius) // grid_density), int((c.pos.y - self.c.player.center.y + grid_radius) // grid_density) ), True, graph, c) for c in self.c.world.cells.values() if c.is_food ]
graph.grid = [[0 for x in range(int(2*grid_radius//grid_density+1))] for x in range(int(2*grid_radius//grid_density+1))]
interesting_cells = list(filter(lambda c : not (c.is_food or c in self.c.player.own_cells), self.c.player.world.cells.values()))
for cell in interesting_cells:
for x in range(-grid_radius,grid_radius+1,grid_density):
gridx = (x+grid_radius) // grid_density
for y in range(-grid_radius,grid_radius+1,grid_density):
gridy = (y+grid_radius) // grid_density
relpos = (cell.pos.x - (x+self.c.player.center.x), cell.pos.y - (y+self.c.player.center.y))
dist_sq = relpos[0]**2 + relpos[1]**2
if dist_sq < cell.size**2 *3:
graph.grid[gridx][gridy] += 100000000
for x in range(-grid_radius,grid_radius+1,grid_density):
gridx = (x+grid_radius) // grid_density
for y in range(-grid_radius,grid_radius+1,grid_density):
gridy = (y+grid_radius) // grid_density
if (gridx in [0,len(graph.grid)-1] or gridy in [0, len(graph.grid[gridx])-1]):
val = None
else:
val = graph.grid[gridx][gridy]
graph.grid[gridx][gridy] = Node(val, self.c.player.center+Vec(x,y), Vec(gridx, gridy), False, graph, None)
for blob in graph.blobs:
blob.find_near_wormholes(200)
return graph.grid
def plan_path(self):
goalx = int((self.gui.marker[0][0] - self.c.player.center[0] + grid_radius)/grid_density)
goaly = int((self.gui.marker[0][1] - self.c.player.center[1] + grid_radius)/grid_density)
grid = self.build_grid()
path = aStar(grid[int(grid_radius/grid_density)][int(grid_radius/grid_density)], grid[goalx][goaly], grid)
return path
def path_is_valid(self, path):
interesting_cells = list(filter(lambda c : not (c.is_food or c in self.c.player.own_cells), self.c.player.world.cells.values()))
for node in path:
for cell in interesting_cells:
relpos = (cell.pos.x - node.point[0], cell.pos.y - node.point[1])
dist_sq = relpos[0]**2 + relpos[1]**2
if dist_sq < cell.size**2 *2:
return False
return True
def process_frame(self):
if self.gui.marker_updated[0]:
self.gui.marker_updated[0]=False
self.path = self.plan_path()
for node in self.path:
print (node.point_in_grid)
print("="*10)
for (node1,node2) in zip(self.path,self.path[1:]):
self.gui.draw_line(node1.point, node2.point, (0,0,0))
if self.path:
relx, rely = self.path[0].point[0]-self.c.player.center.x, self.path[0].point[1]-self.c.player.center.y
if relx*relx + rely*rely < (2*grid_density)**2:
self.path=self.path[1:]
if self.path and not self.path_is_valid(self.path):
print("recalculating!")
self.path = self.plan_path()
if self.path:
return self.path[0].point
return self.gui.marker[0]
|