summaryrefslogtreecommitdiff
path: root/pathfinding.py
blob: b250523f278f747acaa62bb10b516d1583ad3aae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from gui import marker, marker_updated
import gui
import math


# A* code taken and adapted from https://gist.github.com/jamiees2/5531924

class Node:
    def __init__(self,value,point,point_in_grid):
        self.value = value
        self.point = point
        self.point_in_grid = point_in_grid
        self.parent = None
        self.H = 0
        self.G = 0

    def move_cost(self,other):
        # assert other in siblings(self,grid). otherwise this makes no sense
        # assert that siblings are only in horizontal or vertical directions. otherwise
        #        someone must replace the number "1" by appropriate distances
        return distance(self, other) + (self.value + other.value)/2

def siblings(point,grid):
    x,y = point.point_in_grid
    links = [grid[d[0]][d[1]] for d in [(x-1, y),(x,y - 1),(x,y + 1),(x+1,y)]]
    return [link for link in links if link.value != None]

def distance(point,point2):
    return math.sqrt((point.point[0] - point2.point[0])**2 + (point.point[1]-point2.point[1])**2)

def aStar(start, goal, grid):
    print("aStar("+str(start.point)+"="+str(start.point_in_grid)+",  "+str(goal.point)+"="+str(goal.point_in_grid)+")")
    openset = set()
    closedset = set()
    
    current = start 
    openset.add(current)
   
    while openset:
        #Find the item in the open set with the lowest G + H score
        current = min(openset, key=lambda o:o.G + o.H)
        
        #If it is the item we want, retrace the path and return it
        if current == goal:
            path = []
            while current.parent:
                path.append(current)
                current = current.parent
            path.append(current)
            return path[::-1]
        
        openset.remove(current)
        closedset.add(current)
        
        for node in siblings(current,grid):
            if node in closedset:
                continue
            
            if node in openset:
                #Check if we beat the G score 
                new_g = current.G + current.move_cost(node)
                if node.G > new_g:
                    #If so, update the node to have a new parent
                    node.G = new_g
                    node.parent = current
            else:
                #If it isn't in the open set, calculate the G and H score for the node
                node.G = current.G + current.move_cost(node)
                node.H = distance(node, goal)
                
                node.parent = current
                openset.add(node)
    
    raise ValueError('No Path Found')

grid_radius=1100
grid_density=30

class PathfindingTesterStrategy:
    def __init__(self, c):
        self.c = c
        self.path = None

    def plan_path(self):
        goalx = int((marker[0][0] - self.c.player.center[0] + grid_radius)/grid_density)
        goaly = int((marker[0][1] - self.c.player.center[1] + grid_radius)/grid_density)
        
        grid = []

        interesting_cells = list(filter(lambda c : not c.is_food, self.c.player.world.cells.values()))

        for x in range(-grid_radius,grid_radius+1,grid_density):
            gridline = []
            for y in range(-grid_radius,grid_radius+1,grid_density):
                val = 0

                for cell in interesting_cells:
                    relpos = (cell.pos.x - (x+self.c.player.center.x), cell.pos.y - (y+self.c.player.center.y))
                    dist_sq = relpos[0]**2 + relpos[1]**2
                    if dist_sq < cell.size**2 *3:
                        val += 100000000

                gridline.append(Node(None if (x in [-grid_radius,grid_radius] or y in [-grid_radius,grid_radius]) else val, (self.c.player.center[0]+x,self.c.player.center[1]+y), (int((x+grid_radius)/grid_density), int((y+grid_radius)/grid_density))))
            grid.append(gridline)

        path = aStar(grid[int(grid_radius/grid_density)][int(grid_radius/grid_density)], grid[goalx][goaly], grid)
        return path

    def process_frame(self):
        if marker_updated[0]:
            marker_updated[0]=False
            
            self.path = self.plan_path()
            for node in self.path:
                print (node.point_in_grid)
            print("="*10)


        for (node1,node2) in zip(self.path,self.path[1:]):
            gui.draw_line(node1.point, node2.point, (0,0,0))

        if self.path:
            relx, rely = self.path[0].point[0]-self.c.player.center.x, self.path[0].point[1]-self.c.player.center.y
            if relx*relx + rely*rely < (2*grid_density)**2:
                self.path=self.path[1:]

        if self.path:
            return self.path[0].point
        return marker[0]