1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
//===========================================================================
//
// simplechorus
//
// Version 0.0.1
//
//
//
//
// Copyright (c) 2006 Nil Geisweiller
//
//
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA or point your web browser to http://www.gnu.org.
//===========================================================================
#include "simplechorusmodel.h"
#include <math.h>
#include <stdio.h>
#define ABS(x) (x>=0?x:-x)
// Linearly interpolate [ = a * (1 - f) + b * f]
inline float lin_interp(float f, float a, float b) {
return a + f * (b - a);
}
// Cubic interpolation function
inline float cube_interp(const float fr,
const float inm1,
const float in,
const float inp1,
const float inp2) {
return in + 0.5f * fr * (inp1 - inm1 +
fr * (4.0f * inp1 + 2.0f * inm1 - 5.0f * in - inp2 +
fr * (3.0f * (in - inp1) - inm1 + inp2)));
}
float SimpleChorusModel::sinus[MAXSINUSRESOLUTION];
int SimpleChorusModel::useCount = 0;
SimpleChorusModel::SimpleChorusModel(float samplerate) {
_sampleRate = samplerate;
//sinus
if (useCount++ == 0)
for(int i = 0; i < MAXSINUSRESOLUTION; i++)
sinus[i] = (float)(sin(((double)i * 2.0 * M_PI) /
(double)MAXSINUSRESOLUTION));
_index = 0.0;
//init buffer
for(int i = 0; i < MAXBUFFERLENGTH; i++) {
_leftBuffer[i] = 0.0;
_rightBuffer[i] = 0.0;
}
_position = 0;
//initial parameters
_pan = 0.5;
_LFOFreq = 1.0;
_depth = 0.5;
setChorus();
}
SimpleChorusModel::~SimpleChorusModel() {
}
void SimpleChorusModel::process_chorus(float leftInput, float rightInput,
float* leftOutput, float* rightOutput) {
float ocsDiff;
_ocsDistance = _depthAmp * sinus[(int)_index];
ocsDiff = _ocsDistance - floorf(_ocsDistance);
_past_position_left = MAXBUFFERLENGTH //to be sure that _past_position_left>0
+ _position - _leftMidDistance + (int)_ocsDistance;
_past_position_right = MAXBUFFERLENGTH
+ _position - _rightMidDistance + (int)_ocsDistance;
*leftOutput = _leftAmp *
lin_interp(ocsDiff, _leftBuffer[_past_position_left%MAXBUFFERLENGTH],
_leftBuffer[(_past_position_left+1)%MAXBUFFERLENGTH]);
*rightOutput = _rightAmp *
lin_interp(ocsDiff, _rightBuffer[_past_position_right%MAXBUFFERLENGTH],
_rightBuffer[(_past_position_right+1)%MAXBUFFERLENGTH]);
_leftBuffer[_position] = leftInput;
_rightBuffer[_position] = rightInput;
_position++;
_position %= MAXBUFFERLENGTH;
_index += _inct;
_index = (_index<MAXSINUSRESOLUTION?_index:_index-MAXSINUSRESOLUTION);
}
void SimpleChorusModel::setPan(float p) {
_pan = p;
setChorus();
}
void SimpleChorusModel::setLFOFreq(float l) {
_LFOFreq = l;
setChorus();
}
void SimpleChorusModel::setDepth(float d) {
_depth = d;
setChorus();
}
void SimpleChorusModel::setSampleRate(float s) {
_sampleRate = s;
setChorus();
}
float SimpleChorusModel::getPan() {
return _pan;
}
float SimpleChorusModel::getLFOFreq() {
return _LFOFreq;
}
float SimpleChorusModel::getDepth() {
return _depth;
}
void SimpleChorusModel::setChorus() {
//inct
_inct = (float)MAXSINUSRESOLUTION/_sampleRate * _LFOFreq;
//left & right amp
_leftAmp = lin_interp(1.0 - _pan, 1.0 - PANAMP, 1.0 + PANAMP);
_rightAmp = lin_interp(_pan, 1.0 - PANAMP, 1.0 + PANAMP);
//left & right midDistance
float leftmdm; //left mid distance in meter
float rightmdm; //right mid distance in meter
leftmdm = MIDSOURCEDISTANCE - EARSDISTANCE * (0.5 - _pan);
rightmdm = MIDSOURCEDISTANCE + EARSDISTANCE * (0.5 - _pan);
_leftMidDistance = (int)(_sampleRate * leftmdm / SOUNDSPEED);
_rightMidDistance = (int)(_sampleRate * rightmdm / SOUNDSPEED);
//depthAmp
_depthAmp =
_sampleRate * (MAXDEPTH * _depth) /SOUNDSPEED;
//filter coef
_filterCoef1 = 1 - COEFFILTER;
_filterCoef2 = COEFFILTER;
}
|