summaryrefslogtreecommitdiff
path: root/muse/synti/zynaddsubfx/Params/PADnoteParameters.C
diff options
context:
space:
mode:
Diffstat (limited to 'muse/synti/zynaddsubfx/Params/PADnoteParameters.C')
-rw-r--r--muse/synti/zynaddsubfx/Params/PADnoteParameters.C740
1 files changed, 740 insertions, 0 deletions
diff --git a/muse/synti/zynaddsubfx/Params/PADnoteParameters.C b/muse/synti/zynaddsubfx/Params/PADnoteParameters.C
new file mode 100644
index 00000000..05fbdf0f
--- /dev/null
+++ b/muse/synti/zynaddsubfx/Params/PADnoteParameters.C
@@ -0,0 +1,740 @@
+/*
+ ZynAddSubFX - a software synthesizer
+
+ PADnoteParameters.C - Parameters for PADnote (PADsynth)
+ Copyright (C) 2002-2005 Nasca Octavian Paul
+ Author: Nasca Octavian Paul
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of version 2 of the GNU General Public License
+ as published by the Free Software Foundation.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License (version 2) for more details.
+
+ You should have received a copy of the GNU General Public License (version 2)
+ along with this program; if not, write to the Free Software Foundation,
+ Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+*/
+#include <math.h>
+#include "PADnoteParameters.h"
+
+PADnoteParameters::PADnoteParameters(FFTwrapper *fft_,pthread_mutex_t *mutex_):Presets(){
+ setpresettype("Ppadsyth");
+
+ fft=fft_;
+ mutex=mutex_;
+
+ resonance=new Resonance();
+ oscilgen=new OscilGen(fft_,resonance);
+ oscilgen->ADvsPAD=true;
+
+ FreqEnvelope=new EnvelopeParams(0,0);
+ FreqEnvelope->ASRinit(64,50,64,60);
+ FreqLfo=new LFOParams(70,0,64,0,0,0,0,0);
+
+ AmpEnvelope=new EnvelopeParams(64,1);
+ AmpEnvelope->ADSRinit_dB(0,40,127,25);
+ AmpLfo=new LFOParams(80,0,64,0,0,0,0,1);
+
+ GlobalFilter=new FilterParams(2,94,40);
+ FilterEnvelope=new EnvelopeParams(0,1);
+ FilterEnvelope->ADSRinit_filter(64,40,64,70,60,64);
+ FilterLfo=new LFOParams(80,0,64,0,0,0,0,2);
+
+ for (int i=0;i<PAD_MAX_SAMPLES;i++) sample[i].smp=NULL;
+ newsample.smp=NULL;
+
+ defaults();
+};
+
+PADnoteParameters::~PADnoteParameters(){
+ deletesamples();
+ delete(oscilgen);
+ delete(resonance);
+
+ delete(FreqEnvelope);
+ delete(FreqLfo);
+ delete(AmpEnvelope);
+ delete(AmpLfo);
+ delete(GlobalFilter);
+ delete(FilterEnvelope);
+ delete(FilterLfo);
+
+};
+
+void PADnoteParameters::defaults(){
+ Pmode=0;
+ Php.base.type=0;
+ Php.base.par1=80;
+ Php.freqmult=0;
+ Php.modulator.par1=0;
+ Php.modulator.freq=30;
+ Php.width=127;
+ Php.amp.type=0;
+ Php.amp.mode=0;
+ Php.amp.par1=80;
+ Php.amp.par2=64;
+ Php.autoscale=true;
+ Php.onehalf=0;
+
+ setPbandwidth(500);
+ Pbwscale=0;
+
+ resonance->defaults();
+ oscilgen->defaults();
+
+ Phrpos.type=0;
+ Phrpos.par1=64;
+ Phrpos.par2=64;
+ Phrpos.par3=0;
+
+ Pquality.samplesize=3;
+ Pquality.basenote=4;
+ Pquality.oct=3;
+ Pquality.smpoct=2;
+
+ PStereo=1;//stereo
+ /* Frequency Global Parameters */
+ Pfixedfreq=0;
+ PfixedfreqET=0;
+ PDetune=8192;//zero
+ PCoarseDetune=0;
+ PDetuneType=1;
+ FreqEnvelope->defaults();
+ FreqLfo->defaults();
+
+ /* Amplitude Global Parameters */
+ PVolume=90;
+ PPanning=64;//center
+ PAmpVelocityScaleFunction=64;
+ AmpEnvelope->defaults();
+ AmpLfo->defaults();
+ PPunchStrength=0;
+ PPunchTime=60;
+ PPunchStretch=64;
+ PPunchVelocitySensing=72;
+
+ /* Filter Global Parameters*/
+ PFilterVelocityScale=64;
+ PFilterVelocityScaleFunction=64;
+ GlobalFilter->defaults();
+ FilterEnvelope->defaults();
+ FilterLfo->defaults();
+
+ deletesamples();
+};
+
+void PADnoteParameters::deletesample(int n){
+ if ((n<0)||(n>=PAD_MAX_SAMPLES)) return;
+ if (sample[n].smp!=NULL){
+ delete(sample[n].smp);
+ sample[n].smp=NULL;
+ };
+ sample[n].size=0;
+ sample[n].basefreq=440.0;
+};
+
+void PADnoteParameters::deletesamples(){
+ for (int i=0;i<PAD_MAX_SAMPLES;i++) deletesample(i);
+};
+
+/*
+ * Get the harmonic profile (i.e. the frequency distributio of a single harmonic)
+ */
+REALTYPE PADnoteParameters::getprofile(REALTYPE *smp,int size){
+ for (int i=0;i<size;i++) smp[i]=0.0;
+ const int supersample=16;
+ REALTYPE basepar=pow(2.0,(1.0-Php.base.par1/127.0)*12.0);
+ REALTYPE freqmult=floor(pow(2.0,Php.freqmult/127.0*5.0)+0.000001);
+
+ REALTYPE modfreq=floor(pow(2.0,Php.modulator.freq/127.0*5.0)+0.000001);
+ REALTYPE modpar1=pow(Php.modulator.par1/127.0,4.0)*5.0/sqrt(modfreq);
+ REALTYPE amppar1=pow(2.0,pow(Php.amp.par1/127.0,2.0)*10.0)-0.999;
+ REALTYPE amppar2=(1.0-Php.amp.par2/127.0)*0.998+0.001;
+ REALTYPE width=pow(150.0/(Php.width+22.0),2.0);
+
+ for (int i=0;i<size*supersample;i++){
+ bool makezero=false;
+ REALTYPE x=i*1.0/(size*(REALTYPE) supersample);
+
+ REALTYPE origx=x;
+
+ //do the sizing (width)
+ x=(x-0.5)*width+0.5;
+ if (x<0.0) {
+ x=0.0;
+ makezero=true;
+ } else {
+ if (x>1.0) {
+ x=1.0;
+ makezero=true;
+ };
+ };
+
+ //compute the full profile or one half
+ switch(Php.onehalf){
+ case 1:x=x*0.5+0.5;
+ break;
+ case 2:x=x*0.5;
+ break;
+ };
+
+ REALTYPE x_before_freq_mult=x;
+
+ //do the frequency multiplier
+ x*=freqmult;
+
+ //do the modulation of the profile
+ x+=sin(x_before_freq_mult*3.1415926*modfreq)*modpar1;
+ x=fmod(x+1000.0,1.0)*2.0-1.0;
+
+
+ //this is the base function of the profile
+ REALTYPE f;
+ switch (Php.base.type){
+ case 1:f=exp(-(x*x)*basepar);if (f<0.4) f=0.0; else f=1.0;
+ break;
+ case 2:f=exp(-(fabs(x))*sqrt(basepar));
+ break;
+ default:f=exp(-(x*x)*basepar);
+ break;
+ };
+ if (makezero) f=0.0;
+
+ REALTYPE amp=1.0;
+ origx=origx*2.0-1.0;
+
+ //compute the amplitude multiplier
+ switch(Php.amp.type){
+ case 1:amp=exp(-(origx*origx)*10.0*amppar1);
+ break;
+ case 2:amp=0.5*(1.0+cos(3.1415926*origx*sqrt(amppar1*4.0+1.0)));
+ break;
+ case 3:amp=1.0/(pow(origx*(amppar1*2.0+0.8),14.0)+1.0);
+ break;
+ };
+
+ //apply the amplitude multiplier
+ REALTYPE finalsmp=f;
+ if (Php.amp.type!=0){
+ switch(Php.amp.mode){
+ case 0:finalsmp=amp*(1.0-amppar2)+finalsmp*amppar2;
+ break;
+ case 1:finalsmp*=amp*(1.0-amppar2)+amppar2;
+ break;
+ case 2:finalsmp=finalsmp/(amp+pow(amppar2,4.0)*20.0+0.0001);
+ break;
+ case 3:finalsmp=amp/(finalsmp+pow(amppar2,4.0)*20.0+0.0001);
+ break;
+ };
+ };
+
+ smp[i/supersample]+=finalsmp/supersample;
+ };
+
+ //normalize the profile (make the max. to be equal to 1.0)
+ REALTYPE max=0.0;
+ for (int i=0;i<size;i++) {
+ if (smp[i]<0.0) smp[i]=0.0;
+ if (smp[i]>max) max=smp[i];
+ };
+ if (max<0.00001) max=1.0;
+ for (int i=0;i<size;i++) smp[i]/=max;
+
+ if (!Php.autoscale) return(0.5);
+
+ //compute the estimated perceived bandwidth
+ REALTYPE sum=0.0;
+ int i;
+ for (i=0;i<size/2-2;i++) {
+ sum+=smp[i]*smp[i]+smp[size-i-1]*smp[size-i-1];
+ if (sum>=4.0) break;
+ };
+
+ REALTYPE result=1.0-2.0*i/(REALTYPE) size;
+ return(result);
+};
+
+/*
+ * Compute the real bandwidth in cents and returns it
+ * Also, sets the bandwidth parameter
+ */
+REALTYPE PADnoteParameters::setPbandwidth(int Pbandwidth){
+ this->Pbandwidth=Pbandwidth;
+ REALTYPE result=pow(Pbandwidth/1000.0,1.1);
+ result=pow(10.0,result*4.0)*0.25;
+ return(result);
+};
+
+/*
+ * Get the harmonic(overtone) position
+ */
+REALTYPE PADnoteParameters::getNhr(int n){
+ REALTYPE result=1.0;
+ REALTYPE par1=pow(10.0,-(1.0-Phrpos.par1/255.0)*3.0);
+ REALTYPE par2=Phrpos.par2/255.0;
+
+ REALTYPE n0=n-1.0;
+ REALTYPE tmp=0.0;
+ int thresh=0;
+ switch(Phrpos.type){
+ case 1:
+ thresh=(int)(par2*par2*100.0)+1;
+ if (n<thresh) result=n;
+ else result=1.0+n0+(n0-thresh+1.0)*par1*8.0;
+ break;
+ case 2:
+ thresh=(int)(par2*par2*100.0)+1;
+ if (n<thresh) result=n;
+ else result=1.0+n0-(n0-thresh+1.0)*par1*0.90;
+ break;
+ case 3:
+ tmp=par1*100.0+1.0;
+ result=pow(n0/tmp,1.0-par2*0.8)*tmp+1.0;
+ break;
+ case 4:
+ result=n0*(1.0-par1)+pow(n0*0.1,par2*3.0+1.0)*par1*10.0+1.0;
+ break;
+ case 5:
+ result=n0+sin(n0*par2*par2*PI*0.999)*sqrt(par1)*2.0+1.0;
+ break;
+ case 6:
+ tmp=pow(par2*2.0,2.0)+0.1;
+ result=n0*pow(1.0+par1*pow(n0*0.8,tmp),tmp)+1.0;
+ break;
+ default:
+ result=n;
+ break;
+ };
+
+ REALTYPE par3=Phrpos.par3/255.0;
+
+ REALTYPE iresult=floor(result+0.5);
+ REALTYPE dresult=result-iresult;
+
+ result=iresult+(1.0-par3)*dresult;
+
+ return(result);
+};
+
+/*
+ * Generates the long spectrum for Bandwidth mode (only amplitudes are generated; phases will be random)
+ */
+void PADnoteParameters::generatespectrum_bandwidthMode(REALTYPE *spectrum, int size,REALTYPE basefreq,REALTYPE *profile,int profilesize,REALTYPE bwadjust){
+ for (int i=0;i<size;i++) spectrum[i]=0.0;
+
+ REALTYPE harmonics[OSCIL_SIZE/2];
+ for (int i=0;i<OSCIL_SIZE/2;i++) harmonics[i]=0.0;
+ //get the harmonic structure from the oscillator (I am using the frequency amplitudes, only)
+ oscilgen->get(harmonics,basefreq,false);
+
+ //normalize
+ REALTYPE max=0.0;
+ for (int i=0;i<OSCIL_SIZE/2;i++) if (harmonics[i]>max) max=harmonics[i];
+ if (max<0.000001) max=1;
+ for (int i=0;i<OSCIL_SIZE/2;i++) harmonics[i]/=max;
+
+ for (int nh=1;nh<OSCIL_SIZE/2;nh++){//for each harmonic
+ REALTYPE realfreq=getNhr(nh)*basefreq;
+ if (realfreq>SAMPLE_RATE*0.49999) break;
+ if (realfreq<20.0) break;
+ if (harmonics[nh-1]<1e-4) continue;
+
+ //compute the bandwidth of each harmonic
+ REALTYPE bandwidthcents=setPbandwidth(Pbandwidth);
+ REALTYPE bw=(pow(2.0,bandwidthcents/1200.0)-1.0)*basefreq/bwadjust;
+ REALTYPE power=1.0;
+ switch (Pbwscale){
+ case 0: power=1.0;break;
+ case 1: power=0.0;break;
+ case 2: power=0.25;break;
+ case 3: power=0.5;break;
+ case 4: power=0.75;break;
+ case 5: power=1.5;break;
+ case 6: power=2.0;break;
+ case 7: power=-0.5;break;
+ };
+ bw=bw*pow(realfreq/basefreq,power);
+ int ibw=(int)((bw/(SAMPLE_RATE*0.5)*size))+1;
+
+ REALTYPE amp=harmonics[nh-1];
+ if (resonance->Penabled) amp*=resonance->getfreqresponse(realfreq);
+
+ if (ibw>profilesize){//if the bandwidth is larger than the profilesize
+ REALTYPE rap=sqrt((REALTYPE)profilesize/(REALTYPE)ibw);
+ int cfreq=(int) (realfreq/(SAMPLE_RATE*0.5)*size)-ibw/2;
+ for (int i=0;i<ibw;i++){
+ int src=(int)(i*rap*rap);
+ int spfreq=i+cfreq;
+ if (spfreq<0) continue;
+ if (spfreq>=size) break;
+ spectrum[spfreq]+=amp*profile[src]*rap;
+ };
+ }else{//if the bandwidth is smaller than the profilesize
+ REALTYPE rap=sqrt((REALTYPE)ibw/(REALTYPE)profilesize);
+ REALTYPE ibasefreq=realfreq/(SAMPLE_RATE*0.5)*size;
+ for (int i=0;i<profilesize;i++){
+ REALTYPE idfreq=i/(REALTYPE)profilesize-0.5;
+ idfreq*=ibw;
+ int spfreq=(int) (idfreq+ibasefreq);
+ REALTYPE fspfreq=fmod(idfreq+ibasefreq,1.0);
+ if (spfreq<=0) continue;
+ if (spfreq>=size-1) break;
+ spectrum[spfreq]+=amp*profile[i]*rap*(1.0-fspfreq);
+ spectrum[spfreq+1]+=amp*profile[i]*rap*fspfreq;
+ };
+ };
+ };
+};
+
+/*
+ * Generates the long spectrum for non-Bandwidth modes (only amplitudes are generated; phases will be random)
+ */
+void PADnoteParameters::generatespectrum_otherModes(REALTYPE *spectrum, int size,REALTYPE basefreq,REALTYPE *profile,int profilesize,REALTYPE bwadjust){
+ for (int i=0;i<size;i++) spectrum[i]=0.0;
+
+ REALTYPE harmonics[OSCIL_SIZE/2];
+ for (int i=0;i<OSCIL_SIZE/2;i++) harmonics[i]=0.0;
+ //get the harmonic structure from the oscillator (I am using the frequency amplitudes, only)
+ oscilgen->get(harmonics,basefreq,false);
+
+ //normalize
+ REALTYPE max=0.0;
+ for (int i=0;i<OSCIL_SIZE/2;i++) if (harmonics[i]>max) max=harmonics[i];
+ if (max<0.000001) max=1;
+ for (int i=0;i<OSCIL_SIZE/2;i++) harmonics[i]/=max;
+
+ for (int nh=1;nh<OSCIL_SIZE/2;nh++){//for each harmonic
+ REALTYPE realfreq=getNhr(nh)*basefreq;
+
+ ///sa fac aici interpolarea si sa am grija daca frecv descresc
+
+ if (realfreq>SAMPLE_RATE*0.49999) break;
+ if (realfreq<20.0) break;
+// if (harmonics[nh-1]<1e-4) continue;
+
+
+ REALTYPE amp=harmonics[nh-1];
+ if (resonance->Penabled) amp*=resonance->getfreqresponse(realfreq);
+ int cfreq=(int) (realfreq/(SAMPLE_RATE*0.5)*size);
+
+ spectrum[cfreq]=amp+1e-9;
+ };
+
+ if (Pmode!=1){
+ int old=0;
+ for (int k=1;k<size;k++){
+ if ( (spectrum[k]>1e-10) || (k==(size-1)) ){
+ int delta=k-old;
+ REALTYPE val1=spectrum[old];
+ REALTYPE val2=spectrum[k];
+ REALTYPE idelta=1.0/delta;
+ for (int i=0;i<delta;i++){
+ REALTYPE x=idelta*i;
+ spectrum[old+i]=val1*(1.0-x)+val2*x;
+ };
+ old=k;
+ };
+ };
+ };
+
+};
+
+/*
+ * Applies the parameters (i.e. computes all the samples, based on parameters);
+ */
+void PADnoteParameters::applyparameters(bool lockmutex){
+ const int samplesize=(((int) 1)<<(Pquality.samplesize+14));
+ int spectrumsize=samplesize/2;
+ REALTYPE spectrum[spectrumsize];
+ int profilesize=512;
+ REALTYPE profile[profilesize];
+
+
+ REALTYPE bwadjust=getprofile(profile,profilesize);
+// for (int i=0;i<profilesize;i++) profile[i]*=profile[i];
+ REALTYPE basefreq=65.406*pow(2.0,Pquality.basenote/2);
+ if (Pquality.basenote%2==1) basefreq*=1.5;
+
+ int samplemax=Pquality.oct+1;
+ int smpoct=Pquality.smpoct;
+ if (Pquality.smpoct==5) smpoct=6;
+ if (Pquality.smpoct==6) smpoct=12;
+ if (smpoct!=0) samplemax*=smpoct;
+ else samplemax=samplemax/2+1;
+ if (samplemax==0) samplemax=1;
+
+ //prepare a BIG FFT stuff
+ FFTwrapper *fft=new FFTwrapper(samplesize);
+ FFTFREQS fftfreqs;
+ newFFTFREQS(&fftfreqs,samplesize/2);
+
+ REALTYPE adj[samplemax];//this is used to compute frequency relation to the base frequency
+ for (int nsample=0;nsample<samplemax;nsample++) adj[nsample]=(Pquality.oct+1.0)*(REALTYPE)nsample/samplemax;
+ for (int nsample=0;nsample<samplemax;nsample++){
+ REALTYPE tmp=adj[nsample]-adj[samplemax-1]*0.5;
+ REALTYPE basefreqadjust=pow(2.0,tmp);
+
+ if (Pmode==0) generatespectrum_bandwidthMode(spectrum,spectrumsize,basefreq*basefreqadjust,profile,profilesize,bwadjust);
+ else generatespectrum_otherModes(spectrum,spectrumsize,basefreq*basefreqadjust,profile,profilesize,bwadjust);
+
+ const int extra_samples=5;//the last samples contains the first samples (used for linear/cubic interpolation)
+ newsample.smp=new REALTYPE[samplesize+extra_samples];
+
+ newsample.smp[0]=0.0;
+ for (int i=1;i<spectrumsize;i++){//randomize the phases
+ REALTYPE phase=RND*6.29;
+ fftfreqs.c[i]=spectrum[i]*cos(phase);
+ fftfreqs.s[i]=spectrum[i]*sin(phase);
+ };
+ fft->freqs2smps(fftfreqs,newsample.smp);//that's all; here is the only ifft for the whole sample; no windows are used ;-)
+
+
+ //normalize(rms)
+ REALTYPE rms=0.0;
+ for (int i=0;i<samplesize;i++) rms+=newsample.smp[i]*newsample.smp[i];
+ rms=sqrt(rms);
+ if (rms<0.000001) rms=1.0;
+ rms*=sqrt(262144.0/samplesize);
+ for (int i=0;i<samplesize;i++) newsample.smp[i]*=1.0/rms*50.0;
+
+ //prepare extra samples used by the linear or cubic interpolation
+ for (int i=0;i<extra_samples;i++) newsample.smp[i+samplesize]=newsample.smp[i];
+
+ //replace the current sample with the new computed sample
+ if (lockmutex){
+ pthread_mutex_lock(mutex);
+ deletesample(nsample);
+ sample[nsample].smp=newsample.smp;
+ sample[nsample].size=samplesize;
+ sample[nsample].basefreq=basefreq*basefreqadjust;
+ pthread_mutex_unlock(mutex);
+ } else {
+ deletesample(nsample);
+ sample[nsample].smp=newsample.smp;
+ sample[nsample].size=samplesize;
+ sample[nsample].basefreq=basefreq*basefreqadjust;
+ };
+ newsample.smp=NULL;
+ };
+ delete(fft);
+ deleteFFTFREQS(&fftfreqs);
+
+ //delete the additional samples that might exists and are not useful
+ if (lockmutex){
+ pthread_mutex_lock(mutex);
+ for (int i=samplemax;i<PAD_MAX_SAMPLES;i++) deletesample(i);
+ pthread_mutex_unlock(mutex);
+ } else {
+ for (int i=samplemax;i<PAD_MAX_SAMPLES;i++) deletesample(i);
+ };
+};
+
+
+void PADnoteParameters::add2XML(XMLwrapper *xml){
+ xml->information.PADsynth_used=true;
+
+ xml->addparbool("stereo",PStereo);
+ xml->addpar("mode",Pmode);
+ xml->addpar("bandwidth",Pbandwidth);
+ xml->addpar("bandwidth_scale",Pbwscale);
+
+ xml->beginbranch("HARMONIC_PROFILE");
+ xml->addpar("base_type",Php.base.type);
+ xml->addpar("base_par1",Php.base.par1);
+ xml->addpar("frequency_multiplier",Php.freqmult);
+ xml->addpar("modulator_par1",Php.modulator.par1);
+ xml->addpar("modulator_frequency",Php.modulator.freq);
+ xml->addpar("width",Php.width);
+ xml->addpar("amplitude_multiplier_type",Php.amp.type);
+ xml->addpar("amplitude_multiplier_mode",Php.amp.mode);
+ xml->addpar("amplitude_multiplier_par1",Php.amp.par1);
+ xml->addpar("amplitude_multiplier_par2",Php.amp.par2);
+ xml->addparbool("autoscale",Php.autoscale);
+ xml->addpar("one_half",Php.onehalf);
+ xml->endbranch();
+
+ xml->beginbranch("OSCIL");
+ oscilgen->add2XML(xml);
+ xml->endbranch();
+
+ xml->beginbranch("RESONANCE");
+ resonance->add2XML(xml);
+ xml->endbranch();
+
+ xml->beginbranch("HARMONIC_POSITION");
+ xml->addpar("type",Phrpos.type);
+ xml->addpar("parameter1",Phrpos.par1);
+ xml->addpar("parameter2",Phrpos.par2);
+ xml->addpar("parameter3",Phrpos.par3);
+ xml->endbranch();
+
+ xml->beginbranch("SAMPLE_QUALITY");
+ xml->addpar("samplesize",Pquality.samplesize);
+ xml->addpar("basenote",Pquality.basenote);
+ xml->addpar("octaves",Pquality.oct);
+ xml->addpar("samples_per_octave",Pquality.smpoct);
+ xml->endbranch();
+
+ xml->beginbranch("AMPLITUDE_PARAMETERS");
+ xml->addpar("volume",PVolume);
+ xml->addpar("panning",PPanning);
+ xml->addpar("velocity_sensing",PAmpVelocityScaleFunction);
+ xml->addpar("punch_strength",PPunchStrength);
+ xml->addpar("punch_time",PPunchTime);
+ xml->addpar("punch_stretch",PPunchStretch);
+ xml->addpar("punch_velocity_sensing",PPunchVelocitySensing);
+
+ xml->beginbranch("AMPLITUDE_ENVELOPE");
+ AmpEnvelope->add2XML(xml);
+ xml->endbranch();
+
+ xml->beginbranch("AMPLITUDE_LFO");
+ AmpLfo->add2XML(xml);
+ xml->endbranch();
+
+ xml->endbranch();
+
+ xml->beginbranch("FREQUENCY_PARAMETERS");
+ xml->addpar("fixed_freq",Pfixedfreq);
+ xml->addpar("fixed_freq_et",PfixedfreqET);
+ xml->addpar("detune",PDetune);
+ xml->addpar("coarse_detune",PCoarseDetune);
+ xml->addpar("detune_type",PDetuneType);
+
+ xml->beginbranch("FREQUENCY_ENVELOPE");
+ FreqEnvelope->add2XML(xml);
+ xml->endbranch();
+
+ xml->beginbranch("FREQUENCY_LFO");
+ FreqLfo->add2XML(xml);
+ xml->endbranch();
+ xml->endbranch();
+
+ xml->beginbranch("FILTER_PARAMETERS");
+ xml->addpar("velocity_sensing_amplitude",PFilterVelocityScale);
+ xml->addpar("velocity_sensing",PFilterVelocityScaleFunction);
+
+ xml->beginbranch("FILTER");
+ GlobalFilter->add2XML(xml);
+ xml->endbranch();
+
+ xml->beginbranch("FILTER_ENVELOPE");
+ FilterEnvelope->add2XML(xml);
+ xml->endbranch();
+
+ xml->beginbranch("FILTER_LFO");
+ FilterLfo->add2XML(xml);
+ xml->endbranch();
+ xml->endbranch();
+};
+
+void PADnoteParameters::getfromXML(XMLwrapper *xml){
+ PStereo=xml->getparbool("stereo",PStereo);
+ Pmode=xml->getpar127("mode",0);
+ Pbandwidth=xml->getpar("bandwidth",Pbandwidth,0,1000);
+ Pbwscale=xml->getpar127("bandwidth_scale",Pbwscale);
+
+ if (xml->enterbranch("HARMONIC_PROFILE")){
+ Php.base.type=xml->getpar127("base_type",Php.base.type);
+ Php.base.par1=xml->getpar127("base_par1",Php.base.par1);
+ Php.freqmult=xml->getpar127("frequency_multiplier",Php.freqmult);
+ Php.modulator.par1=xml->getpar127("modulator_par1",Php.modulator.par1);
+ Php.modulator.freq=xml->getpar127("modulator_frequency",Php.modulator.freq);
+ Php.width=xml->getpar127("width",Php.width);
+ Php.amp.type=xml->getpar127("amplitude_multiplier_type",Php.amp.type);
+ Php.amp.mode=xml->getpar127("amplitude_multiplier_mode",Php.amp.mode);
+ Php.amp.par1=xml->getpar127("amplitude_multiplier_par1",Php.amp.par1);
+ Php.amp.par2=xml->getpar127("amplitude_multiplier_par2",Php.amp.par2);
+ Php.autoscale=xml->getparbool("autoscale",Php.autoscale);
+ Php.onehalf=xml->getpar127("one_half",Php.onehalf);
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("OSCIL")){
+ oscilgen->getfromXML(xml);
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("RESONANCE")){
+ resonance->getfromXML(xml);
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("HARMONIC_POSITION")){
+ Phrpos.type=xml->getpar127("type",Phrpos.type);
+ Phrpos.par1=xml->getpar("parameter1",Phrpos.par1,0,255);
+ Phrpos.par2=xml->getpar("parameter2",Phrpos.par2,0,255);
+ Phrpos.par3=xml->getpar("parameter3",Phrpos.par3,0,255);
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("SAMPLE_QUALITY")){
+ Pquality.samplesize=xml->getpar127("samplesize",Pquality.samplesize);
+ Pquality.basenote=xml->getpar127("basenote",Pquality.basenote);
+ Pquality.oct=xml->getpar127("octaves",Pquality.oct);
+ Pquality.smpoct=xml->getpar127("samples_per_octave",Pquality.smpoct);
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("AMPLITUDE_PARAMETERS")){
+ PVolume=xml->getpar127("volume",PVolume);
+ PPanning=xml->getpar127("panning",PPanning);
+ PAmpVelocityScaleFunction=xml->getpar127("velocity_sensing",PAmpVelocityScaleFunction);
+ PPunchStrength=xml->getpar127("punch_strength",PPunchStrength);
+ PPunchTime=xml->getpar127("punch_time",PPunchTime);
+ PPunchStretch=xml->getpar127("punch_stretch",PPunchStretch);
+ PPunchVelocitySensing=xml->getpar127("punch_velocity_sensing",PPunchVelocitySensing);
+
+ xml->enterbranch("AMPLITUDE_ENVELOPE");
+ AmpEnvelope->getfromXML(xml);
+ xml->exitbranch();
+
+ xml->enterbranch("AMPLITUDE_LFO");
+ AmpLfo->getfromXML(xml);
+ xml->exitbranch();
+
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("FREQUENCY_PARAMETERS")){
+ Pfixedfreq=xml->getpar127("fixed_freq",Pfixedfreq);
+ PfixedfreqET=xml->getpar127("fixed_freq_et",PfixedfreqET);
+ PDetune=xml->getpar("detune",PDetune,0,16383);
+ PCoarseDetune=xml->getpar("coarse_detune",PCoarseDetune,0,16383);
+ PDetuneType=xml->getpar127("detune_type",PDetuneType);
+
+ xml->enterbranch("FREQUENCY_ENVELOPE");
+ FreqEnvelope->getfromXML(xml);
+ xml->exitbranch();
+
+ xml->enterbranch("FREQUENCY_LFO");
+ FreqLfo->getfromXML(xml);
+ xml->exitbranch();
+ xml->exitbranch();
+ };
+
+ if (xml->enterbranch("FILTER_PARAMETERS")){
+ PFilterVelocityScale=xml->getpar127("velocity_sensing_amplitude",PFilterVelocityScale);
+ PFilterVelocityScaleFunction=xml->getpar127("velocity_sensing",PFilterVelocityScaleFunction);
+
+ xml->enterbranch("FILTER");
+ GlobalFilter->getfromXML(xml);
+ xml->exitbranch();
+
+ xml->enterbranch("FILTER_ENVELOPE");
+ FilterEnvelope->getfromXML(xml);
+ xml->exitbranch();
+
+ xml->enterbranch("FILTER_LFO");
+ FilterLfo->getfromXML(xml);
+ xml->exitbranch();
+ xml->exitbranch();
+ };
+};
+
+