summaryrefslogtreecommitdiff
path: root/strategy.py
blob: 1f1249f351daae339727ced9109a2345916dfdea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import math
from interval_utils import *
import gui
import random

class Strategy:
    def __init__(self):
        self.target = (0,0)
        self.has_target = False
        self.target_cell = None
        self.color = (0,0,0)
        
    def process_frame(self,c):
        runaway = False
        
        my_smallest = min(map(lambda cell : cell.mass, c.player.own_cells))
        my_largest = max(map(lambda cell : cell.mass, c.player.own_cells))


        # enemy/virus avoidance
        forbidden_intervals = []
        for cell in c.world.cells.values():
            relpos = ((cell.pos[0]-c.player.center[0]),(cell.pos[1]-c.player.center[1]))
            dist = math.sqrt(relpos[0]**2+relpos[1]**2)

            if (not cell.is_virus and dist < ((500+2*cell.size) if cell.mass > 1.25*my_smallest*2 else (300+cell.size)) and  cell.mass > 1.25 * my_smallest) or (cell.is_virus and dist < my_largest and cell.mass < my_largest):
                angle = math.atan2(relpos[1],relpos[0])
                corridor_halfwidth = math.asin(cell.size / dist)
                forbidden_intervals += canonicalize_angle_interval((angle-corridor_halfwidth, angle+corridor_halfwidth))
                runaway = True
        
        # wall avoidance
        if c.player.center[0] < c.world.top_left[1]+(c.player.total_size*2):
            forbidden_intervals += [(0.5*pi, 1.5*pi)]
        if c.player.center[0] > c.world.bottom_right[1]-(c.player.total_size*2):
            forbidden_intervals += [(0,0.5*pi), (1.5*pi, 2*pi)]
        if c.player.center[1] < c.world.top_left[0]+(c.player.total_size*2):
            forbidden_intervals += [(pi, 2*pi)]
        if c.player.center[1] > c.world.bottom_right[0]-(c.player.total_size*2):
            forbidden_intervals += [(0, pi)]
        
        # if there's actually an enemy to avoid:
        if (runaway):
            # find the largest non-forbidden interval, and run into this direction.

            forbidden_intervals = merge_intervals(forbidden_intervals)

            allowed_intervals = invert_angle_intervals(forbidden_intervals)

            (a,b) = find_largest_angle_interval(allowed_intervals)
            runaway_angle = (a+b)/2
            runaway_x, runaway_y = (c.player.center[0]+int(100*math.cos(runaway_angle))), (c.player.center[1]+int(100*math.sin(runaway_angle)))
            
            self.target = (runaway_x, runaway_y)
            self.has_target = False
            self.target_cell = None
            
            self.color = (255,0,0)
            print ("Running away: " + str((runaway_x-c.player.center[0], runaway_y-c.player.center[1])))
            
            # a bit of debugging information
            for i in forbidden_intervals:
                gui.draw_arc(c.player.center, c.player.total_size+10, i, (255,0,255))

        # if however there's no enemy to avoid, chase food or jizz randomly around
        else:
            def edible(cell): return (cell.is_food) or (cell.mass <= sorted(c.player.own_cells, key = lambda x: x.mass)[0].mass * 0.75) and not (cell.is_virus)
            def rival(cell, food):
                if cell.is_virus or cell.is_food: return False
                if cell.cid in c.player.own_ids: return False

                if cell.mass < 1.25*my_smallest:
                    return food.is_food or cell.size > 1.25*food.size
                else:
                    return False
            def splitkiller(cell):
                return not cell.is_virus and not cell.is_food and cell.mass > 1.25*2*my_smallest
            
            def nonsplitkiller(cell):
                return not cell.is_virus and not cell.is_food and 1.20*my_smallest < cell.mass and cell.mass < 1.25*2*my_smallest
            
            if self.target_cell != None:
                self.target = tuple(self.target_cell.pos)
                if self.target_cell not in c.world.cells.values() or not edible(self.target_cell):
                    self.target_cell = None
                    self.has_target = False
                    print("target_cell does not exist any more")
            elif self.target == tuple(c.player.center):
                self.has_target = False
                print("Reached random destination")
            
            if not self.has_target:
                food = list(filter(edible, c.world.cells.values()))
                
                def quality(cell):
                    dd_sq = max((cell.pos[0]-c.player.center[0])**2 + (cell.pos[1]-c.player.center[1])**2,0.001)
                    sigma = 500
                    dist_score = -math.exp(-dd_sq/(2*sigma**2))

                    rivals = filter(lambda r : rival(r,cell), c.world.cells.values())
                    splitkillers = filter(splitkiller, c.world.cells.values())
                    nonsplitkillers = filter(nonsplitkiller, c.world.cells.values())

                    rival_score = 0
                    for r in rivals:
                        dd_sq = max(0.001, (r.pos[0]-cell.pos[0])**2 + (r.pos[1]-cell.pos[1])**2)
                        sigma = r.size + 100
                        rival_score += math.exp(-dd_sq/(2*sigma**2))

                    splitkill_score = 0
                    for s in splitkillers:
                        dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
                        sigma = (500+2*s.size)
                        splitkill_score += math.exp(-dd_sq/(2*sigma**2))

                    nonsplitkill_score = 0
                    for s in nonsplitkillers:
                        dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
                        sigma = (300+s.size)
                        nonsplitkill_score += math.exp(-dd_sq/(2*sigma**2))

                    density_score = 0
                    sigma = 300
                    for f in filter(lambda c : c.is_food and c!=cell, c.world.cells.values()):
                        dd_sq = (f.pos[0]-cell.pos[0])**2 + (f.pos[1]-cell.pos[1])**2
                        density_score -= math.exp(-dd_sq/(2*sigma**2))

                    wall_score = 0
                    wall_dist = min( cell.pos[0]-c.world.top_left[1], c.world.bottom_right[1]-cell.pos[0], cell.pos[1]-c.world.top_left[0], c.world.bottom_right[0]-cell.pos[1] )
                    sigma = 100
                    wall_score = math.exp(-wall_dist**2/(2*sigma**2))

                    return dist_score + 0.2*rival_score + nonsplitkill_score + 5*splitkill_score + 0.1*density_score + 5*wall_score
                    ##print (density_score)
                    #return density_score

                food = sorted(food, key = quality)
                
                if len(food) > 0:
                    self.target = (food[0].pos[0], food[0].pos[1])
                    self.target_cell = food[0]
                    self.has_target = True
                    self.color = (0,0,255)
                    print("Found food at: " + str(food[0].pos))
                else:
                    rx = c.player.center[0] + random.randrange(-400, 401)
                    ry = c.player.center[1] + random.randrange(-400, 401)
                    self.target = (rx, ry)
                    self.has_target = True
                    self.color = (0,255,0)
                    print("Nothing to do, heading to random targetination: " + str((rx, ry)))
        

        # more debugging
        gui.draw_line(c.player.center, self.target, self.color)
        
        return self.target