1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
import math
from interval_utils import *
import gui
import random
class Strategy:
def __init__(self):
self.target = (0,0)
self.has_target = False
self.target_cell = None
self.color = (0,0,0)
def process_frame(self,c):
runaway = False
my_smallest = min(map(lambda cell : cell.mass, c.player.own_cells))
my_largest = max(map(lambda cell : cell.mass, c.player.own_cells))
# enemy/virus avoidance
forbidden_intervals = []
for cell in c.world.cells.values():
relpos = ((cell.pos[0]-c.player.center[0]),(cell.pos[1]-c.player.center[1]))
dist = math.sqrt(relpos[0]**2+relpos[1]**2)
if (not cell.is_virus and dist < ((500+2*cell.size) if cell.mass > 1.25*my_smallest*2 else (300+cell.size)) and cell.mass > 1.25 * my_smallest) or (cell.is_virus and dist < my_largest and cell.mass < my_largest):
angle = math.atan2(relpos[1],relpos[0])
corridor_halfwidth = math.asin(cell.size / dist)
forbidden_intervals += canonicalize_angle_interval((angle-corridor_halfwidth, angle+corridor_halfwidth))
runaway = True
# wall avoidance
if c.player.center[0] < c.world.top_left[1]+(c.player.total_size*2):
forbidden_intervals += [(0.5*pi, 1.5*pi)]
if c.player.center[0] > c.world.bottom_right[1]-(c.player.total_size*2):
forbidden_intervals += [(0,0.5*pi), (1.5*pi, 2*pi)]
if c.player.center[1] < c.world.top_left[0]+(c.player.total_size*2):
forbidden_intervals += [(pi, 2*pi)]
if c.player.center[1] > c.world.bottom_right[0]-(c.player.total_size*2):
forbidden_intervals += [(0, pi)]
# if there's actually an enemy to avoid:
if (runaway):
# find the largest non-forbidden interval, and run into this direction.
forbidden_intervals = merge_intervals(forbidden_intervals)
allowed_intervals = invert_angle_intervals(forbidden_intervals)
(a,b) = find_largest_angle_interval(allowed_intervals)
runaway_angle = (a+b)/2
runaway_x, runaway_y = (c.player.center[0]+int(100*math.cos(runaway_angle))), (c.player.center[1]+int(100*math.sin(runaway_angle)))
self.target = (runaway_x, runaway_y)
self.has_target = False
self.target_cell = None
self.color = (255,0,0)
print ("Running away: " + str((runaway_x-c.player.center[0], runaway_y-c.player.center[1])))
# a bit of debugging information
for i in forbidden_intervals:
gui.draw_arc(c.player.center, c.player.total_size+10, i, (255,0,255))
# if however there's no enemy to avoid, chase food or jizz randomly around
else:
def edible(cell): return (cell.is_food) or (cell.mass <= sorted(c.player.own_cells, key = lambda x: x.mass)[0].mass * 0.75) and not (cell.is_virus)
def rival(cell, food):
if cell.is_virus or cell.is_food: return False
if cell.cid in c.player.own_ids: return False
if cell.mass < 1.25*my_smallest:
return food.is_food or cell.size > 1.25*food.size
else:
return False
def splitkiller(cell):
return not cell.is_virus and not cell.is_food and cell.mass > 1.25*2*my_smallest
def nonsplitkiller(cell):
return not cell.is_virus and not cell.is_food and 1.20*my_smallest < cell.mass and cell.mass < 1.25*2*my_smallest
if self.target_cell != None:
self.target = tuple(self.target_cell.pos)
if self.target_cell not in c.world.cells.values() or not edible(self.target_cell):
self.target_cell = None
self.has_target = False
print("target_cell does not exist any more")
elif self.target == tuple(c.player.center):
self.has_target = False
print("Reached random destination")
if not self.has_target:
food = list(filter(edible, c.world.cells.values()))
def quality(cell):
dd_sq = max((cell.pos[0]-c.player.center[0])**2 + (cell.pos[1]-c.player.center[1])**2,0.001)
sigma = 500
dist_score = -math.exp(-dd_sq/(2*sigma**2))
rivals = filter(lambda r : rival(r,cell), c.world.cells.values())
splitkillers = filter(splitkiller, c.world.cells.values())
nonsplitkillers = filter(nonsplitkiller, c.world.cells.values())
rival_score = 0
for r in rivals:
dd_sq = max(0.001, (r.pos[0]-cell.pos[0])**2 + (r.pos[1]-cell.pos[1])**2)
sigma = r.size + 100
rival_score += math.exp(-dd_sq/(2*sigma**2))
splitkill_score = 0
for s in splitkillers:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = (500+2*s.size)
splitkill_score += math.exp(-dd_sq/(2*sigma**2))
nonsplitkill_score = 0
for s in nonsplitkillers:
dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
sigma = (300+s.size)
nonsplitkill_score += math.exp(-dd_sq/(2*sigma**2))
density_score = 0
sigma = 300
for f in filter(lambda c : c.is_food and c!=cell, c.world.cells.values()):
dd_sq = (f.pos[0]-cell.pos[0])**2 + (f.pos[1]-cell.pos[1])**2
density_score -= math.exp(-dd_sq/(2*sigma**2))
wall_score = 0
wall_dist = min( cell.pos[0]-c.world.top_left[1], c.world.bottom_right[1]-cell.pos[0], cell.pos[1]-c.world.top_left[0], c.world.bottom_right[0]-cell.pos[1] )
sigma = 100
wall_score = math.exp(-wall_dist**2/(2*sigma**2))
return dist_score + 0.2*rival_score + nonsplitkill_score + 5*splitkill_score + 0.1*density_score + 5*wall_score
##print (density_score)
#return density_score
food = sorted(food, key = quality)
if len(food) > 0:
self.target = (food[0].pos[0], food[0].pos[1])
self.target_cell = food[0]
self.has_target = True
self.color = (0,0,255)
print("Found food at: " + str(food[0].pos))
else:
rx = c.player.center[0] + random.randrange(-400, 401)
ry = c.player.center[1] + random.randrange(-400, 401)
self.target = (rx, ry)
self.has_target = True
self.color = (0,255,0)
print("Nothing to do, heading to random targetination: " + str((rx, ry)))
# more debugging
gui.draw_line(c.player.center, self.target, self.color)
return self.target
|