1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
import math
from interval_utils import *
import gui
class Strategy:
def __init__(self):
self.target = (0,0)
self.has_target = False
self.target_cell = None
self.color = (0,0,0)
def process_frame(self,c):
runaway = False
my_smallest = min(map(lambda cell : cell.mass, c.player.own_cells))
my_largest = max(map(lambda cell : cell.mass, c.player.own_cells))
forbidden_intervals = []
for cell in c.world.cells.values():
relpos = ((cell.pos[0]-c.player.center[0]),(cell.pos[1]-c.player.center[1]))
dist = math.sqrt(relpos[0]**2+relpos[1]**2)
if (not cell.is_virus and dist < 500+2*cell.size and cell.mass > 1.25 * my_smallest) or (cell.is_virus and dist < my_largest and cell.mass < my_largest):
angle = math.atan2(relpos[1],relpos[0])
corridor_width = 2 * math.asin(cell.size / dist)
forbidden_intervals += canonicalize_angle_interval((angle-corridor_width, angle+corridor_width))
runaway = True
#wall avoidance
if c.player.center[0] < c.world.top_left[1]+(c.player.total_size*2):
forbidden_intervals += [(0.5*pi, 1.5*pi)]
if c.player.center[0] > c.world.bottom_right[1]-(c.player.total_size*2):
forbidden_intervals += [(0,0.5*pi), (1.5*pi, 2*pi)]
if c.player.center[1] < c.world.top_left[0]+(c.player.total_size*2):
forbidden_intervals += [(pi, 2*pi)]
if c.player.center[1] > c.world.bottom_right[0]-(c.player.total_size*2):
forbidden_intervals += [(0, pi)]
if (runaway):
forbidden_intervals = merge_intervals(forbidden_intervals)
for i in forbidden_intervals:
gui.draw_arc(c.player.center, c.player.total_size+10, i, (255,0,255))
allowed_intervals = invert_angle_intervals(forbidden_intervals)
(a,b) = find_largest_angle_interval(allowed_intervals)
runaway_angle = (a+b)/2
runaway_x, runaway_y = (c.player.center[0]+int(100*math.cos(runaway_angle))), (c.player.center[1]+int(100*math.sin(runaway_angle)))
self.target = (runaway_x, runaway_y)
self.has_target = False
self.target_cell = None
self.color = (255,0,0)
print ("Running away: " + str((runaway_x-c.player.center[0], runaway_y-c.player.center[1])))
else:
if self.target_cell != None:
self.target = tuple(self.target_cell.pos)
if self.target_cell not in c.world.cells.values():
self.target_cell = None
self.has_target = False
print("target_cell does not exist any more")
elif self.target == tuple(c.player.center):
self.has_target = False
print("Reached random destination")
if not self.has_target:
def eatable(cell): return (cell.is_food) or (cell.mass <= sorted(c.player.own_cells, key = lambda x: x.mass)[0].mass * 0.75) and not (cell.is_virus)
food = list(filter(eatable, c.world.cells.values()))
def dist(cell): return math.sqrt((cell.pos[0]-c.player.center[0])**2 + (cell.pos[1]-c.player.center[1])**2)
food = sorted(food, key = dist)
if len(food) > 0:
self.target = (food[0].pos[0], food[0].pos[1])
self.target_cell = food[0]
self.has_target = True
self.color = (0,0,255)
print("Found food at: " + str(food[0].pos))
else:
rx = c.player.center[0] + random.randrange(-400, 401)
ry = c.player.center[1] + random.randrange(-400, 401)
self.target = (rx, ry)
self.has_target = True
self.color = (0,255,0)
print("Nothing to do, heading to random targetination: " + str((rx, ry)))
gui.draw_line(c.player.center, self.target, self.color)
gui.update()
return self.target
|