summaryrefslogtreecommitdiff
path: root/stats.py
blob: 0b460c58771e38a15faead3b657202fe346fc901 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import time
import math
import random
from collections import defaultdict
import pickle
from functools import reduce

def flatten(l):
    return reduce(lambda a,b:a+b, l)

def quantile(values, q):
    if isinstance(values, dict):
        return quantile(flatten(map(lambda x : [x[0]]*x[1], sorted(values.items(),key=lambda x:x[0]))), q)
    else:
        return values[ int(len(values)*q) ]

def avg(values):
    if not isinstance(values, dict):
        return sum(values)/len(values)
    else:
        return int(sum(map( lambda x : x[0]*x[1], values.items() )) / sum(map(lambda x : x[1], values.items())))

def stddev(values):
    a=avg(values)
    return avg(list(map(lambda v : (v-a)**2, values)))

def normalize(values):
    a=avg(values)
    return [x/a for x in values]

class StatData():
    pass

def return_empty_list():
    return []

def return_defaultdict_with_empty_list():
    return defaultdict(return_empty_list)

def return_zero():
    return 0

def return_defaultdict_with_zeros():
    return defaultdict(return_zero)

class Stats:
    def __init__(self,c,data=None):
        self.c = c

        self.split_countdown = 27*20

        if data == None:
            self.data = StatData()
            self.data.version = 2

            self.data.min_mass = 0
            self.data.max_mass = 0
            self.data.current_mass = 0
            
            self.data.mass_history = []
            self.data.pos_history = []
            self.data.cell_aggressivity = {}
            self.data.cell_split_frequency = {}
            self.data.cell_defensiveness = {}

            self.data.size_vs_speed = defaultdict(return_defaultdict_with_zeros)
            self.data.size_vs_visible_window = defaultdict(return_defaultdict_with_empty_list)
            self.data.mass_vs_visible_window = defaultdict(return_defaultdict_with_empty_list)
        else:
            self.data = data
        
    def log_mass(self, mass):
        self.data.mass_history.append((time.time(), mass))
        self.data.current_mass = mass
        if mass > self.data.max_mass:
            self.data.max_mass = mass
        if mass < self.data.min_mass:
            self.data.min_mass = mass
    
    def log_pos(self, pos):
        self.data.pos_history.append((time.time(), (pos[0], pos[1])))
        
    def update_cell_aggressivity(self, cell, value):
        self.data.cell_aggressivity[cell] = value
        
    def update_cell_split_frequency(self, cell, value):
        self.data.cell_split_frequency[cell] = value
    
    def update_cell_defensiveness(self, cell, value):
        self.data.cell_defensiveness[cell] = value
        
    def get_last_steps(self, list, steps = 10):
        return list[-steps:]

    def process_frame(self):
        self.split_countdown -= 1
        if (self.split_countdown <= 0):
            self.split_countdown = int(27* (random.random() * 75))
            self.c.send_split()

        self.log_pos(self.c.player.center)
        self.log_mass(self.c.player.total_mass)
        
        cells = self.c.world.cells.values()
        own_cells = list(self.c.player.own_cells)

        own_total_size = sum( map(lambda cell : cell.size, own_cells) )
        own_total_mass = sum( map(lambda cell : cell.mass, own_cells) )
        n_own_cells = len(own_cells)

        n = 3
        for cell in filter(lambda cell : not cell.is_food and not cell.is_virus and not cell.is_ejected_mass, cells):
            if hasattr(cell,'poslog') and len(cell.poslog) > n+1:
                cellspeed = 0
                for i in range(1,n+1):
                    cellspeed += (cell.poslog[-i] - cell.poslog[-i-1]).len() / n
                
                cellspeed = int(cellspeed*10)/10
                self.data.size_vs_speed[cell.size][cellspeed] += 1

        visible_width = max( map(lambda cell : cell.pos.x - cell.size, cells) ) - min( map(lambda cell : cell.pos.x + cell.size, cells) )
        visible_height = max( map(lambda cell : cell.pos.y - cell.size, cells) ) - min( map(lambda cell : cell.pos.y + cell.size, cells) )

        self.data.size_vs_visible_window[n_own_cells][own_total_size].append((visible_width,visible_height))
        self.data.mass_vs_visible_window[n_own_cells][own_total_mass].append((visible_width,visible_height))

    def save(self,filename):
        pickle.dump(self.data, open(filename,"wb"))

    def load(filename):
        return Stats(None, pickle.load(open(filename,"rb")))

    def merge(self, filename):
        data2 = pickle.load(open(filename,"rb"))
        self.data.min_mass = min(self.data.min_mass, data2.min_mass)
        self.data.max_mass = max(self.data.max_mass, data2.max_mass)
        
        for i in data2.size_vs_visible_window:
            for j in data2.size_vs_visible_window[i]:
                self.data.size_vs_visible_window[i][j] += data2.size_vs_visible_window[i][j]
        for i in data2.mass_vs_visible_window:
            for j in data2.mass_vs_visible_window[i]:
                self.data.mass_vs_visible_window[i][j] += data2.mass_vs_visible_window[i][j]

        for i in data2.size_vs_speed:
            for j in data2.size_vs_speed[i]:
                self.data.size_vs_speed[i][j] += data2.size_vs_speed[i][j]


    
    def analyze_speed(self):
        results=[]
        for size, values in sorted(self.data.size_vs_speed.items(), key=lambda x : x[0]):
            minimum = quantile(values, 0.2)
            average = quantile(values, 0.5)
            maximum = quantile(values, 0.8)

            results += [(size,maximum,average,minimum,False,False,False,sum(values.values()))]
      
        # mark outliers
        for i in range(1, len(results)-1):
            for j in range(1,4):
                if abs(results[i][j] - results[i-1][j]) > 2 and abs(results[i][j] - results[i+1][j]) > 2:
                    tmp = list(results[i])
                    tmp[j+3] = True
                    results[i] = tuple(tmp)

        coeff_vs_stddev = []
        for coeff in [x/100 for x in range(10,100,1)]:
            products = []
            for size, maximum, average, minimum, maxoutlier, avgoutlier, minoutlier, ndata in results:
                if not maxoutlier:
                    products += [size**coeff * maximum]
            
            coeff_vs_stddev += [(coeff, avg(products), stddev(normalize(products)))]

        best = min(coeff_vs_stddev, key=lambda v:v[2])

        print("size\tcalc\tmax\tavg\tmin\t\tndata")
        for size, maximum, average, minimum, maxoutlier, avgoutlier, minoutlier, ndata in results:
            print(str(size) + ":\t" + "%.1f" % (best[1] / size**best[0]) + "\t" + ("*" if maxoutlier else "") + str(maximum) + "\t" + ("*" if avgoutlier else "") + str(average) + "\t" + ("*" if minoutlier else "") + str(minimum) + "\t\t" + str(ndata))
        
        print("size**"+str(best[0])+" * speed = "+str(best[1])  )

    def analyze_visible_window_helper(self, foo_vs_visible_window, verbose=False):
        svw = {}
        ratios = []
        if verbose: print("size\tdiag")
        for size, rects in sorted(foo_vs_visible_window.items(), key=lambda x:x[0]):
            maxwidth = quantile(sorted(map(lambda x:x[0], rects)), 0.75)
            maxheight = quantile(sorted(map(lambda x:x[1], rects)), 0.75)
            
            if math.sqrt(maxwidth**2+maxheight**2) < 4000:
                # TODO FIXME 
                svw[size] = (maxwidth,maxheight)
            ratios += [maxwidth/maxheight]
        
            if verbose: print(str(size)+"\t"+str(math.sqrt(maxwidth**2+maxheight**2))+"\t\t"+str(len(rects)))
        
        print ("median ratio = "+str(quantile(sorted(ratios),0.5)))

        coeff_vs_stddev=[]
        for coeff in [x/100 for x in range(0,100,1)]:
            quotients = []
            for size, rect in svw.items():
                if size != 0:
                    diag = math.sqrt(rect[0]**2+rect[1]**2)
                    quotients += [diag / size**coeff]
            
            coeff_vs_stddev += [(coeff, avg(quotients), stddev(normalize(quotients)))]

        best = min(coeff_vs_stddev, key=lambda v:v[2])

        print("diag / size**"+str(best[0])+" = "+str(best[1]))

    def analyze_visible_window(self, verbose=False):
        for ncells in sorted(self.data.size_vs_visible_window.keys()):
            print("\nwith "+str(ncells)+" cells, depending on sum(size)")
            self.analyze_visible_window_helper(self.data.size_vs_visible_window[ncells], verbose)
        for ncells in sorted(self.data.mass_vs_visible_window.keys()):
            print("\nwith "+str(ncells)+" cells, depending on sum(mass)")
            self.analyze_visible_window_helper(self.data.mass_vs_visible_window[ncells], verbose)