summaryrefslogtreecommitdiff
path: root/stats.py
blob: d65c6d3d699d33f931a12f59b13f9bf6c7cc1373 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import time
import math
import random
from collections import defaultdict
import pickle
from functools import reduce
import mechanics
import geometry
#import numpy

def fit_gaussian(l):
    mean = sum(l) / len(l)
    stddev = math.sqrt(sum(map(lambda v : (v-mean)**2, l)) / len(l))
    return mean, stddev

def flatten(l):
    return reduce(lambda a,b:a+b, l)

def quantile(values, q):
    if isinstance(values, dict):
        return quantile(flatten(map(lambda x : [x[0]]*x[1], sorted(values.items(),key=lambda x:x[0]))), q)
    else:
        try:
            return sorted(values)[ int(len(values)*q) ]
        except:
            return 0

def find_smallest_q_confidence_area(values, q):
    """Calculates the (mid, delta) with the smallest delta, such that at least q * len(values)
       lie within the interval [mid-delta, mid+delta]."""
    try:
        mid = min(values, key = lambda value : quantile(list(map(lambda x : abs(x-value), values)), q))
        deviation = quantile(list(map(lambda x : abs(x-mid), values)),q)
        #print(list(map(lambda x : abs(x-mid), values)))
        return mid,deviation
    except:
        return 0,0

def get_delta_confidence(values, mid, delta):
    #"""Calculates which fraction of the values lie within [mid-delta, mid+delta]"""
    #try:
        return len(list(filter(lambda v : (mid-delta <= v and v <= mid+delta), values))) / len(values)
    #except:
    #    raise
    #    return 0

def avg(values):
    if not isinstance(values, dict):
        return sum(values)/len(values)
    else:
        return int(sum(map( lambda x : x[0]*x[1], values.items() )) / sum(map(lambda x : x[1], values.items())))

def stddev(values):
    a=avg(values)
    return avg(list(map(lambda v : (v-a)**2, values)))

def normalize(values):
    a=avg(values)
    return [x/a for x in values]

class StatData():
    pass

def return_empty_list():
    return []

def return_defaultdict_with_empty_list():
    return defaultdict(return_empty_list)

def return_zero():
    return 0

def return_defaultdict_with_zeros():
    return defaultdict(return_zero)

class ReMerging:
    def __init__(self, size1, size2, birth1, birth2, is_parent_child, begin_time):
        self.size1 = size1
        self.size2 = size2
        self.birth1 = birth1
        self.birth2 = birth2
        self.is_parent_child = is_parent_child
        self.begin_time = begin_time
        self.end_time = None

class Stats:
    def __init__(self,c,data=None):
        self.c = c

        self.countdown = 27*20

        if data == None:
            self.data = StatData()
            self.data.version = 4

            self.data.min_mass = 0
            self.data.max_mass = 0
            self.data.current_mass = 0
            
            self.data.mass_history = []
            self.data.pos_history = []
            self.data.cell_aggressivity = {}
            self.data.cell_split_frequency = {}
            self.data.cell_defensiveness = {}

            self.data.size_vs_speed = defaultdict(return_defaultdict_with_zeros)
            self.data.size_vs_visible_window = defaultdict(return_defaultdict_with_empty_list)
            self.data.mass_vs_visible_window = defaultdict(return_defaultdict_with_empty_list)

            self.data.eject_distlogs = {"virus" : [], "split cell" : [], "ejected mass" : []}
            self.data.eject_deviations = {"virus" : [], "split cell" : [], "ejected mass" : []}

            self.data.observed_virus_sizes = defaultdict(return_zero)
            self.data.remerging = {}
        else:
            self.data = data
        
    def save(self,filename):
        pickle.dump(self.data, open(filename,"wb"))

    def load(filename):
        return Stats(None, pickle.load(open(filename,"rb")))

    def merge(self, filename):
        data2 = pickle.load(open(filename,"rb"))
        self.data.min_mass = min(self.data.min_mass, data2.min_mass)
        self.data.max_mass = max(self.data.max_mass, data2.max_mass)
        
        for i in data2.size_vs_visible_window:
            for j in data2.size_vs_visible_window[i]:
                self.data.size_vs_visible_window[i][j] += data2.size_vs_visible_window[i][j]
        for i in data2.mass_vs_visible_window:
            for j in data2.mass_vs_visible_window[i]:
                self.data.mass_vs_visible_window[i][j] += data2.mass_vs_visible_window[i][j]

        for i in data2.size_vs_speed:
            for j in data2.size_vs_speed[i]:
                self.data.size_vs_speed[i][j] += data2.size_vs_speed[i][j]

        for i in data2.eject_deviations:
            self.data.eject_deviations[i] += data2.eject_deviations[i]

        for i in data2.eject_distlogs:
            self.data.eject_distlogs[i] += data2.eject_distlogs[i]

        for i in self.data.observed_virus_sizes:
            self.data.observed_virus_sizes[i] += data2.observed_virus_sizes[i]

        self.data.remerging.update(data2.remerging)

    def log_mass(self, mass):
        self.data.mass_history.append((time.time(), mass))
        self.data.current_mass = mass
        if mass > self.data.max_mass:
            self.data.max_mass = mass
        if mass < self.data.min_mass:
            self.data.min_mass = mass
    
    def log_pos(self, pos):
        self.data.pos_history.append((time.time(), (pos[0], pos[1])))
        
    def update_cell_aggressivity(self, cell, value):
        self.data.cell_aggressivity[cell] = value
        
    def update_cell_split_frequency(self, cell, value):
        self.data.cell_split_frequency[cell] = value
    
    def update_cell_defensiveness(self, cell, value):
        self.data.cell_defensiveness[cell] = value
        
    def get_last_steps(self, list, steps = 10):
        return list[-steps:]

    def process_frame(self):
        self.countdown -= 1
        if (self.countdown <= 0):
            quick_followup = (random.random() < 0.1)
            
            if quick_followup:
                self.countdown = 7
            else:
                self.countdown = int(27* (random.random() * 15))

            what_to_do = random.random()
            if what_to_do < 0.2:
                self.c.send_split()
            else:
                self.c.send_shoot()

        self.log_pos(self.c.player.center)
        self.log_mass(self.c.player.total_mass)
        
        cells = self.c.world.cells.values()
        own_cells = list(self.c.player.own_cells)

        own_total_size = sum( map(lambda cell : cell.size, own_cells) )
        own_total_mass = sum( map(lambda cell : cell.mass, own_cells) )
        n_own_cells = len(own_cells)

        n = 3
        for cell in filter(lambda cell : not cell.is_food and not cell.is_virus and not cell.is_ejected_mass, cells):
            if hasattr(cell,'poslog') and len(cell.poslog) > n+1:
                cellspeed = 0
                for i in range(1,n+1):
                    cellspeed += (cell.poslog[-i] - cell.poslog[-i-1]).len() / n
                
                cellspeed = int(cellspeed*10)/10
                self.data.size_vs_speed[cell.size][cellspeed] += 1

        visible_width = max( map(lambda cell : cell.pos.x - cell.size, cells) ) - min( map(lambda cell : cell.pos.x + cell.size, cells) )
        visible_height = max( map(lambda cell : cell.pos.y - cell.size, cells) ) - min( map(lambda cell : cell.pos.y + cell.size, cells) )

        self.data.size_vs_visible_window[n_own_cells][own_total_size].append((visible_width,visible_height))
        self.data.mass_vs_visible_window[n_own_cells][own_total_mass].append((visible_width,visible_height))


        # log virus sizes
        for cell in cells:
            if cell.is_virus:
                self.data.observed_virus_sizes[cell.size] += 1
        
        # detect re-merging cells
        for cell in own_cells:
            for cell2 in own_cells:
                if cell2 != cell:
                    dist = (cell.pos - cell2.pos).len()
                    expected_dist = cell.size + cell2.size
                    min_dist = max(cell.size, cell2.size)

                    if (dist < (0.9 * expected_dist + 0.1 * min_dist)):
                        is_parent_child = (cell == cell2.parent or cell2 == cell.parent)
                        print("cells seem to be merging! they are "+ ("" if is_parent_child else "NOT ") + "parent and child")
                        pair_id = (min(cell.cid,cell2.cid), max(cell.cid,cell2.cid))
                        
                        if pair_id not in self.data.remerging:
                            self.data.remerging[pair_id] = ReMerging(cell.size, cell2.size, cell.spawntime, cell2.spawntime, is_parent_child, self.c.world.time)
                        else:
                            self.data.remerging[pair_id].end_time = self.c.world.time
                


        # find ejected mass, split cells or viruses that have come to rest
        for cell in cells:
            if hasattr(cell,"parent") and cell.parent != None and not cell.calmed_down:
                # we're only interested in cells with a parent set, because
                # this also implies that we have tracked them since their
                # creation.
                # also, we're only interested in cells that are still flying
                # as a result of being ejected/split.
                
                if not cell.is_food and not cell.is_ejected_mass and not cell.is_virus:
                    expected_speed = mechanics.speed(cell.size)
                    celltype = "split cell"
                elif cell.is_virus:
                    expected_speed = 1
                    celltype = "virus"
                elif cell.is_ejected_mass:
                    expected_speed = 1
                    celltype = "ejected mass"


                if cell.movement.len() < expected_speed * 1.1:
                    print(celltype+" has come to rest, nframes="+str(len(cell.poslog)))
                    cell.calmed_down = True
                    # TODO: speed log

                    # distance is calculated naively
                    distance = (cell.spawnpoint - cell.pos).len()

                    # distance2 is calculated along the cell's path (will differ if the flight was not colinear)
                    poslog = list(cell.poslog)
                    speeds = list(map(lambda vecs : (vecs[0]-vecs[1]).len(), zip(poslog, poslog[1:])))
                    distance2 = sum(speeds)

                    distance_from_parent = (cell.parentpos_when_spawned - cell.pos).len()

                    self.data.eject_distlogs[celltype] += [(distance, distance2, distance_from_parent, cell.parentsize_when_spawned, len(cell.poslog), speeds)]
                    print("  flown distance = %.2f / %.2f"%(distance,distance2))

                if len(cell.poslog) == 5:
                    # calculate movement direction from the first 5 samples

                    # first check whether they're on a straight line
                    if geometry.is_colinear(cell.poslog) and cell.shoot_vec != None:
                        print(celltype+" direction available!")
                        fly_direction = cell.poslog[-1] - cell.poslog[0]
                        fly_angle = math.atan2(fly_direction.y, fly_direction.x)

                        shoot_angle = math.atan2(cell.shoot_vec.y, cell.shoot_vec.x)


                        deviation = (fly_angle - shoot_angle) % (2*math.pi)
                        if deviation > math.pi: deviation -= 2*math.pi
                        print("  deviation = "+str(deviation*180/math.pi))

                        self.data.eject_deviations[celltype] += [deviation]

                    else:
                        print(celltype+" did NOT fly in a straight line, ignoring...")


    
    def analyze_speed(self):
        results=[]
        for size, values in sorted(self.data.size_vs_speed.items(), key=lambda x : x[0]):
            minimum = quantile(values, 0.2)
            average = quantile(values, 0.5)
            maximum = quantile(values, 0.8)

            results += [(size,maximum,average,minimum,False,False,False,sum(values.values()))]
      
        # mark outliers
        for i in range(1, len(results)-1):
            for j in range(1,4):
                if abs(results[i][j] - results[i-1][j]) > 2 and abs(results[i][j] - results[i+1][j]) > 2:
                    tmp = list(results[i])
                    tmp[j+3] = True
                    results[i] = tuple(tmp)

        coeff_vs_stddev = []
        for coeff in [x/100 for x in range(10,100,1)]:
            products = []
            for size, maximum, average, minimum, maxoutlier, avgoutlier, minoutlier, ndata in results:
                if not maxoutlier:
                    products += [size**coeff * maximum]
            
            coeff_vs_stddev += [(coeff, avg(products), stddev(normalize(products)))]

        best = min(coeff_vs_stddev, key=lambda v:v[2])

        print("size\tcalc\tmax\tavg\tmin\t\tndata")
        for size, maximum, average, minimum, maxoutlier, avgoutlier, minoutlier, ndata in results:
            print(str(size) + ":\t" + "%.1f" % (best[1] / size**best[0]) + "\t" + ("*" if maxoutlier else "") + str(maximum) + "\t" + ("*" if avgoutlier else "") + str(average) + "\t" + ("*" if minoutlier else "") + str(minimum) + "\t\t" + str(ndata))
        
        print("size**"+str(best[0])+" * speed = "+str(best[1])  )

    def analyze_visible_window_helper(self, foo_vs_visible_window, verbose=False):
        svw = {}
        ratios = []
        if verbose: print("size\tdiag")
        for size, rects in sorted(foo_vs_visible_window.items(), key=lambda x:x[0]):
            maxwidth = quantile(sorted(map(lambda x:x[0], rects)), 0.75)
            maxheight = quantile(sorted(map(lambda x:x[1], rects)), 0.75)
            
            if math.sqrt(maxwidth**2+maxheight**2) < 4000:
                # TODO FIXME
                svw[size] = (maxwidth,maxheight)
            ratios += [maxwidth/maxheight]
        
            if verbose: print(str(size)+"\t"+str(math.sqrt(maxwidth**2+maxheight**2))+"\t\t"+str(len(rects)))
        
        print ("median ratio = "+str(quantile(sorted(ratios),0.5)))

        coeff_vs_stddev=[]
        for coeff in [x/100 for x in range(0,100,1)]:
            quotients = []
            for size, rect in svw.items():
                if size != 0:
                    diag = math.sqrt(rect[0]**2+rect[1]**2)
                    quotients += [diag / size**coeff]
            
            coeff_vs_stddev += [(coeff, avg(quotients), stddev(normalize(quotients)))]

        best = min(coeff_vs_stddev, key=lambda v:v[2])

        print("diag / size**"+str(best[0])+" = "+str(best[1]))

    def analyze_visible_window(self, verbose=False):
        for ncells in sorted(self.data.size_vs_visible_window.keys()):
            if len(self.data.size_vs_visible_window[ncells]) > 0:
                print("\nwith "+str(ncells)+" cells, depending on sum(size)")
                try:
                    self.analyze_visible_window_helper(self.data.size_vs_visible_window[ncells], verbose)
                except ZeroDivisionError:
                    print("\toops.")
        for ncells in sorted(self.data.mass_vs_visible_window.keys()):
            if len(self.data.mass_vs_visible_window[ncells]) > 0:
                print("\nwith "+str(ncells)+" cells, depending on sum(mass)")
                try:
                    self.analyze_visible_window_helper(self.data.mass_vs_visible_window[ncells], verbose)
                except ZeroDivisionError:
                    print("\toops.")

    def analyze_deviations(self, celltype):
        ds = self.data.eject_deviations[celltype]

        try:
            mean, stddev = fit_gaussian(ds)
        except:
            mean, stddev = "???", "???"


        quant = quantile(list(map(abs, ds)), 0.75)

        print(celltype+" eject/split direction deviations: mean = "+str(mean)+", stddev="+str(stddev)+", ndata="+str(len(ds)))
        print("\t75%% of the splits had a deviation smaller than %.2f rad = %.2f deg" % (quant, quant*180/math.pi))
        print("")
        

        #a,b = numpy.histogram(ds, bins=100)
        #midpoints = map(lambda x : (x[0]+x[1])/2, zip(b, b[1:]))
        #for n,x in zip(a,midpoints):
        #    print(str(n) + "\t" + str(x))

    def analyze_distances(self, celltype):
        ds = [v[0] for v in self.data.eject_distlogs[celltype]]
        ns = [v[4] for v in self.data.eject_distlogs[celltype]]

        try:
            mean, stddev = fit_gaussian(ds)
            meann, stddevn = fit_gaussian(ns)
        except:
            mean, stddev = "???", "???"
            meann, stddevn = "???", "???"

        print(celltype+" eject/split distances: mean  = "+str(mean) +", stddev  ="+str(stddev) +", ndata="+str(len(ds)))
        print(celltype+"                        meann = "+str(meann)+", stddevn ="+str(stddevn))
        
        #a,b = numpy.histogram(ds, bins=100)
        #midpoints = list(map(lambda x : (x[0]+x[1])/2, zip(b, b[1:])))
        #for n,x in zip(a,midpoints):
        #    print(str(n) + "\t" + str(x))

        #maxidx = max(range(0,len(a)), key = lambda i : a[i])
        #print("\tmaximum at "+str(midpoints[maxidx]))

        #q = 75 if celltype == "ejected mass" else 75
        #quant = quantile(list(map(lambda v : abs(v-midpoints[maxidx]), ds)), q/100)
        #print("\t"+str(q)+"% of values lie have a distance of at most "+str(quant)+" from the maximum")
        
        mid, delta = find_smallest_q_confidence_area(ds, 0.75)
        print("\t75%% of the distances lie in the interval %.2f plusminus %.2f" % (mid,delta))
        print("\t%2d%% of the distances lie in the interval %.2f plusminus %.2f" % (100*get_delta_confidence(ds, mid, delta*1.2), mid, delta*1.2) )
        print("\tmax = %.2f" % (max(ds)))
        mid, delta = find_smallest_q_confidence_area(ns, 0.75)
        print("\t75%% of the flight lengths lie in the interval %.2f plusminus %.2f" % (mid,delta))
        print("\t%2d%% of the flight lengths lie in the interval %.2f plusminus %.2f" % (100*get_delta_confidence(ns,mid,delta*1.2),mid,delta*1.2))
        print("")

    def analyze_virus_sizes(self):
        print("\nI've seen the following %d virus sizes:" % len(self.data.observed_virus_sizes))
        for size, ndata in sorted(self.data.observed_virus_sizes.items(), key=lambda x:x[0]):
            print("\t%4d: %7d times" % (size, ndata))

    def analyze_remerge(self):
        relevant = list(filter(lambda r : r.is_parent_child, self.data.remerging.values()))
        durations = list(map(lambda r : r.end_time - r.begin_time, relevant))
        print("75%% of the remerge durations lie at %.2f plusminus %.2f frames" % find_smallest_q_confidence_area(durations,0.75))
        waittimes = list(map(lambda r : r.begin_time - max(r.birth1, r.birth2), relevant))
        print("75%% of the remerges were started after %.2f plusminus %.2f frames" % find_smallest_q_confidence_area(waittimes,0.75))