summaryrefslogtreecommitdiff
path: root/pathfinding.py
diff options
context:
space:
mode:
Diffstat (limited to 'pathfinding.py')
-rw-r--r--pathfinding.py77
1 files changed, 65 insertions, 12 deletions
diff --git a/pathfinding.py b/pathfinding.py
index 951a055..bb27ced 100644
--- a/pathfinding.py
+++ b/pathfinding.py
@@ -1,6 +1,9 @@
import heapq
import math
from agarnet.agarnet.vec import Vec
+from mechanics import *
+
+inf = 999999
"""
pathfinding works by performing an A* search on a graph, built as follows:
@@ -199,12 +202,46 @@ def aStar(start, goal):
grid_density=30
grid_radius=int(1100/grid_density)*grid_density
+
+
+
+
class PathfindingTesterStrategy:
def __init__(self, c, gui):
self.c = c
self.path = None
self.gui = gui
+ def grid_circle(self, graph, pos, size, val):
+ xmin,xmax = int(self.c.player.center.x-grid_radius), int(self.c.player.center.x+grid_radius+1)
+ ymin,ymax = int(self.c.player.center.y-grid_radius), int(self.c.player.center.y+grid_radius+1)
+ x1,x2 = int(max(xmin, pos.x - size - grid_density)), int(min(xmax, pos.x + size + grid_density))
+ y1,y2 = int(max(ymin, pos.y - size - grid_density)), int(min(ymax, pos.y + size + grid_density))
+ xx1,yy1 = graph.grid.getpos(x1,y1)
+ xx2,yy2 = graph.grid.getpos(x2,y2)
+ size_sq = size*size
+ for (x,xx) in zip( range(x1,x2, grid_density), range(xx1,xx2) ):
+ for (y,yy) in zip( range(y1,y2, grid_density), range(yy1,yy2) ):
+ relpos = (pos.x - x, pos.y - y)
+ dist_sq = relpos[0]**2 + relpos[1]**2
+ if dist_sq < size_sq:
+ graph.grid.data[xx][yy] += val
+
+ def grid_gaussian(self, graph, pos, size, val):
+ xmin,xmax = int(self.c.player.center.x-grid_radius), int(self.c.player.center.x+grid_radius+1)
+ ymin,ymax = int(self.c.player.center.y-grid_radius), int(self.c.player.center.y+grid_radius+1)
+ x1,x2 = int(max(xmin, pos.x - size - grid_density)), int(min(xmax, pos.x + size + grid_density))
+ y1,y2 = int(max(ymin, pos.y - size - grid_density)), int(min(ymax, pos.y + size + grid_density))
+ xx1,yy1 = graph.grid.getpos(x1,y1)
+ xx2,yy2 = graph.grid.getpos(x2,y2)
+ size_sq = size*size
+ for (x,xx) in zip( range(x1,x2, grid_density), range(xx1,xx2) ):
+ for (y,yy) in zip( range(y1,y2, grid_density), range(yy1,yy2) ):
+ relpos = (pos.x - x, pos.y - y)
+ dist_sq = relpos[0]**2 + relpos[1]**2
+ if dist_sq < size_sq * 16:
+ graph.grid.data[xx][yy] += val * math.exp(-dist_sq / size_sq / 2)
+
def build_graph(self):
graph = Graph(None, [])
@@ -227,20 +264,36 @@ class PathfindingTesterStrategy:
interesting_cells = list(filter(lambda c : not (c.is_food or c in self.c.player.own_cells), self.c.player.world.cells.values()))
- xmin,xmax = int(self.c.player.center.x-grid_radius), int(self.c.player.center.x+grid_radius+1)
- ymin,ymax = int(self.c.player.center.y-grid_radius), int(self.c.player.center.y+grid_radius+1)
+ xmin,xmax = int(self.c.player.center.x-grid_radius), int(self.c.player.center.x+grid_radius+1)
+ ymin,ymax = int(self.c.player.center.y-grid_radius), int(self.c.player.center.y+grid_radius+1)
+ own_speed = speed(get_my_largest_cell(self.c))
+ if own_speed == 0:
+ own_speed = 1
for cell in interesting_cells:
- x1,x2 = max(xmin, cell.pos.x - 3*cell.size - grid_density), min(xmax, cell.pos.x + 3*cell.size + grid_density)
- y1,y2 = max(ymin, cell.pos.y - 3*cell.size - grid_density), min(ymax, cell.pos.y + 3*cell.size + grid_density)
- xx1,yy1 = graph.grid.getpos(x1,y1)
- xx2,yy2 = graph.grid.getpos(x2,y2)
- for (x,xx) in zip( range(x1,x2, grid_density), range(xx1,xx2) ):
- for (y,yy) in zip( range(y1,y2, grid_density), range(yy1,yy2) ):
- relpos = (cell.pos.x - x, cell.pos.y - y)
- dist = math.sqrt(relpos[0]**2 + relpos[1]**2)
- if dist < cell.size + 100:
- graph.grid.data[xx][yy] = 100000000
+ if is_dangerous_virus(cell, self.c):
+ self.grid_circle(graph, cell.pos, cell.size, inf)
+ elif is_enemy(cell, self.c):
+ dist = (cell.pos - self.c.player.center).len()
+ dist_until_eaten = max(0, dist - cell.size)
+ eta = dist / own_speed
+
+ danger_zone = cell.size + (0 if not is_splitkiller(cell, self.c) else 700)
+
+ extrapolated_pos = cell.pos
+ movement_range = 0
+ try:
+ extrapolated_pos += cell.movement * eta
+ movement_range = cell.movement.len() * eta
+ except AttributeError:
+ pass
+
+ if dist_until_eaten < 100:
+ self.grid_circle(graph, cell.pos, cell.size, inf)
+ else:
+ self.grid_circle(graph, cell.pos, danger_zone, 1000)
+
+
xx1,yy1 = graph.grid.getpos(xmin,ymin)
xx2,yy2 = graph.grid.getpos(xmax+1,ymax+1)