summaryrefslogtreecommitdiff
path: root/strategy.py
diff options
context:
space:
mode:
authorSpitfireX <timm.weber@me.com>2015-08-13 04:09:32 +0200
committerSpitfireX <timm.weber@me.com>2015-08-13 04:09:32 +0200
commit2f353651102a0173f10a44b8e13d3946daaaa4a9 (patch)
treeafa2dbf1d4cac5340e8fd9c7924e75709980099e /strategy.py
parentdff67de3971d8c42d7f023ff21f9ae501cc933e5 (diff)
parentb6f5787233b87725dd743082fbff5f94039d2479 (diff)
Merge remote-tracking branch 'origin/tastyness'
Conflicts: strategy.py Todesmerge aus der Hölle.
Diffstat (limited to 'strategy.py')
-rw-r--r--strategy.py63
1 files changed, 60 insertions, 3 deletions
diff --git a/strategy.py b/strategy.py
index 258bef0..5b8ca5a 100644
--- a/strategy.py
+++ b/strategy.py
@@ -33,7 +33,7 @@ class Strategy:
relpos = ((cell.pos[0]-self.c.player.center[0]),(cell.pos[1]-self.c.player.center[1]))
dist = math.sqrt(relpos[0]**2+relpos[1]**2)
- if (not cell.is_virus and dist < 500+2*cell.size and cell.mass > 1.25 * my_smallest) or (cell.is_virus and dist < my_largest and cell.mass < my_largest):
+ if (not cell.is_virus and dist < ((500+2*cell.size) if cell.mass > 1.25*my_smallest*2 else (300+cell.size)) and cell.mass > 1.25 * my_smallest) or (cell.is_virus and dist < my_largest and cell.mass < my_largest):
angle = math.atan2(relpos[1],relpos[0])
corridor_halfwidth = math.asin(cell.size / dist)
forbidden_intervals += canonicalize_angle_interval((angle-corridor_halfwidth, angle+corridor_halfwidth))
@@ -73,7 +73,21 @@ class Strategy:
gui.draw_arc(self.c.player.center, self.c.player.total_size+10, i, (255,0,255))
# if however there's no enemy to avoid, chase food or jizz randomly around
- else:
+ else:
+ def rival(cell, food):
+ if cell.is_virus or cell.is_food: return False
+ if cell.cid in self.c.player.own_ids: return False
+
+ if cell.mass < 1.25*my_smallest:
+ return food.is_food or cell.size > 1.25*food.size
+ else:
+ return False
+ def splitkiller(cell):
+ return not cell.is_virus and not cell.is_food and cell.mass > 1.25*2*my_smallest
+
+ def nonsplitkiller(cell):
+ return not cell.is_virus and not cell.is_food and 1.20*my_smallest < cell.mass and cell.mass < 1.25*2*my_smallest
+
if self.target_cell != None:
self.target = tuple(self.target_cell.pos)
if self.target_cell not in self.c.world.cells.values() or not self.edible(self.target_cell):
@@ -86,7 +100,50 @@ class Strategy:
if not self.has_target:
food = list(filter(self.edible, self.c.world.cells.values()))
- food = sorted(food, key = self.dist)
+
+ def quality(cell):
+ dd_sq = max((cell.pos[0]-self.c.player.center[0])**2 + (cell.pos[1]-self.c.player.center[1])**2,0.001)
+ sigma = 500
+ dist_score = -math.exp(-dd_sq/(2*sigma**2))
+
+ rivals = filter(lambda r : rival(r,cell), self.c.world.cells.values())
+ splitkillers = filter(splitkiller, self.c.world.cells.values())
+ nonsplitkillers = filter(nonsplitkiller, self.c.world.cells.values())
+
+ rival_score = 0
+ for r in rivals:
+ dd_sq = max(0.001, (r.pos[0]-cell.pos[0])**2 + (r.pos[1]-cell.pos[1])**2)
+ sigma = r.size + 100
+ rival_score += math.exp(-dd_sq/(2*sigma**2))
+
+ splitkill_score = 0
+ for s in splitkillers:
+ dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
+ sigma = (500+2*s.size)
+ splitkill_score += math.exp(-dd_sq/(2*sigma**2))
+
+ nonsplitkill_score = 0
+ for s in nonsplitkillers:
+ dd_sq = max(0.001, (s.pos[0]-cell.pos[0])**2 + (s.pos[1]-cell.pos[1])**2)
+ sigma = (300+s.size)
+ nonsplitkill_score += math.exp(-dd_sq/(2*sigma**2))
+
+ density_score = 0
+ sigma = 300
+ for f in filter(lambda c : c.is_food and c!=cell, self.c.world.cells.values()):
+ dd_sq = (f.pos[0]-cell.pos[0])**2 + (f.pos[1]-cell.pos[1])**2
+ density_score -= math.exp(-dd_sq/(2*sigma**2))
+
+ wall_score = 0
+ wall_dist = min( cell.pos[0]-self.c.world.top_left[1], self.c.world.bottom_right[1]-cell.pos[0], cell.pos[1]-self.c.world.top_left[0], self.c.world.bottom_right[0]-cell.pos[1] )
+ sigma = 100
+ wall_score = math.exp(-wall_dist**2/(2*sigma**2))
+
+ return dist_score + 0.2*rival_score + nonsplitkill_score + 5*splitkill_score + 0.1*density_score + 5*wall_score
+ ##print (density_score)
+ #return density_score
+
+ food = sorted(food, key = quality)
if len(food) > 0:
self.target = (food[0].pos[0], food[0].pos[1])