import cv2 import math import numpy from math import sin,cos cap = cv2.VideoCapture("../vid.mp4") writer = cv2.VideoWriter("../outvid.avi",cv2.cv.CV_FOURCC(*'MP42'),25,(1600,600),1) ###### CONFIG ###### feature_params = dict( maxCorners = 100, qualityLevel = 0.3, minDistance = 20, blockSize = 7 ) scale_factor=0.5 scr_width=1600 scr_height=600 # Parameters for lucas kanade optical flow lk_params = dict( winSize = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) ###### INITALISATION ###### ret,oldframe=cap.read() oldgray=cv2.cvtColor(oldframe,cv2.COLOR_BGR2GRAY) height, width, bpp = oldframe.shape mask = numpy.ones((height,width, 1), numpy.uint8) * 255 screencontent = numpy.zeros((scr_height, scr_width,3), numpy.uint8) total_angle=0. total_x=1500 total_y=-300 while(cap.isOpened()): ret, frame = cap.read() gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) # calculate movement, rotation and stretch. (we will ignore the stretch factor.) mat = cv2.estimateRigidTransform(gray,oldgray,False) angle = math.atan2(mat[0,1],mat[0,0]) stretch = int((math.sqrt(mat[0,1]**2+mat[0,0]**2)-1)*100) # calculate shift_x and _y is if one would rotate-and-stretch around the center of the image, not the topleft corner shift_x = mat[0,2] - width/2 + ( mat[0,0]*width/2 + mat[0,1]*height/2 ) shift_y = mat[1,2] - height/2 + ( mat[1,0]*width/2 + mat[1,1]*height/2 ) # accumulate values total_x = total_x + shift_x total_y = total_y + shift_y total_angle=total_angle+angle print angle/3.141592654*180,'deg\t',stretch,"%\t", shift_x,'\t',shift_y # rotate and move current frame into a global context mat2=cv2.getRotationMatrix2D((width/2,height/2), total_angle/3.141593654*180, scale_factor) mat2[0,2] = mat2[0,2]+total_x*scale_factor mat2[1,2] = mat2[1,2]+total_y*scale_factor frame2= cv2.warpAffine(frame, mat2, (scr_width,scr_height) ) mask2 = cv2.warpAffine(mask, mat2, (scr_width,scr_height) ) ret, mask2 = cv2.threshold(mask2, 254, 255, cv2.THRESH_BINARY) mask3 = cv2.erode(mask2, numpy.ones((20,200),numpy.uint8)) # strip off the potentially-badlooking edges. left/right borders are darkened, strip them off mask4 = cv2.erode(mask2, numpy.ones((1,1),numpy.uint8)) screencontent = cv2.bitwise_and(screencontent,screencontent, mask=cv2.bitwise_not(mask3)) # blank out screencontent = cv2.add(screencontent, cv2.bitwise_and(frame2,frame2,mask=mask3)) # and redraw screencontent2=screencontent.copy() screencontent2=cv2.bitwise_and(screencontent2,screencontent2, mask=cv2.bitwise_not(mask4)) screencontent2=cv2.add(screencontent2, cv2.bitwise_and(frame2,frame2,mask=mask4)) cv2.imshow('frame', frame) cv2.imshow('screencontent', screencontent) cv2.imshow('screencontent2', screencontent2) writer.write(screencontent2) oldframe=frame oldgray=gray key = cv2.waitKey(1) & 0xFF if key == ord("q"): break if key == ord("r"): total_angle=0. total_x=700 total_y=-200 screencontent = numpy.zeros((scr_height, scr_width,3), numpy.uint8)