/*
  ZynAddSubFX - a software synthesizer
 
  OscilGen.C - Waveform generator for ADnote
  Copyright (C) 2002-2005 Nasca Octavian Paul
  Author: Nasca Octavian Paul

  This program is free software; you can redistribute it and/or modify
  it under the terms of version 2 of the GNU General Public License 
  as published by the Free Software Foundation.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License (version 2) for more details.

  You should have received a copy of the GNU General Public License (version 2)
  along with this program; if not, write to the Free Software Foundation,
  Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA

*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#include "OscilGen.h"
#include "../Effects/Distorsion.h"

REALTYPE *OscilGen::tmpsmps;//this array stores some termporary data and it has SOUND_BUFFER_SIZE elements
FFTFREQS OscilGen::outoscilFFTfreqs;


OscilGen::OscilGen(FFTwrapper *fft_,Resonance *res_):Presets(){
    setpresettype("Poscilgen");
    fft=fft_;
    res=res_;
    newFFTFREQS(&oscilFFTfreqs,OSCIL_SIZE/2);
    newFFTFREQS(&basefuncFFTfreqs,OSCIL_SIZE/2);

    randseed=1;
    ADvsPAD=false;

    defaults();
};

OscilGen::~OscilGen(){
    deleteFFTFREQS(&basefuncFFTfreqs);
    deleteFFTFREQS(&oscilFFTfreqs);
};


void OscilGen::defaults(){

    oldbasefunc=0;oldbasepar=64;oldhmagtype=0;oldwaveshapingfunction=0;oldwaveshaping=64;
    oldbasefuncmodulation=0;oldharmonicshift=0;oldbasefuncmodulationpar1=0;oldbasefuncmodulationpar2=0;oldbasefuncmodulationpar3=0;
    oldmodulation=0;oldmodulationpar1=0;oldmodulationpar2=0;oldmodulationpar3=0;

    for (int i=0;i<MAX_AD_HARMONICS;i++){
	hmag[i]=0.0;
	hphase[i]=0.0;
	Phmag[i]=64;
	Phphase[i]=64;
    };
    Phmag[0]=127;
    Phmagtype=0;
    if (ADvsPAD) Prand=127;//max phase randomness (usefull if the oscil will be imported to a ADsynth from a PADsynth
	else Prand=64;//no randomness

    Pcurrentbasefunc=0;
    Pbasefuncpar=64;

    Pbasefuncmodulation=0;
    Pbasefuncmodulationpar1=64;
    Pbasefuncmodulationpar2=64;
    Pbasefuncmodulationpar3=32;

    Pmodulation=0;
    Pmodulationpar1=64;
    Pmodulationpar2=64;
    Pmodulationpar3=32;

    Pwaveshapingfunction=0;
    Pwaveshaping=64;
    Pfiltertype=0;
    Pfilterpar1=64;
    Pfilterpar2=64;
    Pfilterbeforews=0;
    Psatype=0;
    Psapar=64;

    Pamprandpower=64;
    Pamprandtype=0;
    
    Pharmonicshift=0;
    Pharmonicshiftfirst=0;

    Padaptiveharmonics=0;
    Padaptiveharmonicspower=100;
    Padaptiveharmonicsbasefreq=128;
    Padaptiveharmonicspar=50;
    
    for (int i=0;i<OSCIL_SIZE/2;i++) {
	oscilFFTfreqs.s[i]=0.0;
	oscilFFTfreqs.c[i]=0.0;
	basefuncFFTfreqs.s[i]=0.0;
	basefuncFFTfreqs.c[i]=0.0;
    };
    oscilprepared=0;
    oldfilterpars=0;oldsapars=0;
    prepare();
};

void OscilGen::convert2sine(int magtype){
   REALTYPE mag[MAX_AD_HARMONICS],phase[MAX_AD_HARMONICS];
    REALTYPE oscil[OSCIL_SIZE];
    FFTFREQS freqs;
    newFFTFREQS(&freqs,OSCIL_SIZE/2);

    get(oscil,-1.0);
    FFTwrapper *fft=new FFTwrapper(OSCIL_SIZE);
    fft->smps2freqs(oscil,freqs);
    delete(fft);

    REALTYPE max=0.0;
        
    mag[0]=0;
    phase[0]=0;
    for (int i=0;i<MAX_AD_HARMONICS;i++){
        mag[i]=sqrt(pow(freqs.s[i+1],2)+pow(freqs.c[i+1],2.0));
	phase[i]=atan2(freqs.c[i+1],freqs.s[i+1]);
	if (max<mag[i]) max=mag[i];
    };
    if (max<0.00001) max=1.0;
    
    defaults();
        
    for (int i=0;i<MAX_AD_HARMONICS-1;i++){
	REALTYPE newmag=mag[i]/max;
	REALTYPE newphase=phase[i];

	Phmag[i]=(int) ((newmag)*64.0)+64;
	
	Phphase[i]=64-(int) (64.0*newphase/PI);
	if (Phphase[i]>127) Phphase[i]=127;
	
	if (Phmag[i]==64) Phphase[i]=64;
    };
    deleteFFTFREQS(&freqs);
    prepare();
};

/* 
 * Base Functions - START 
 */
REALTYPE OscilGen::basefunc_pulse(REALTYPE x,REALTYPE a){
    return((fmod(x,1.0)<a)?-1.0:1.0);
};

REALTYPE OscilGen::basefunc_saw(REALTYPE x,REALTYPE a){
    if (a<0.00001) a=0.00001;
	else if (a>0.99999) a=0.99999;
    x=fmod(x,1);
    if (x<a) return(x/a*2.0-1.0);
	else return((1.0-x)/(1.0-a)*2.0-1.0);
};

REALTYPE OscilGen::basefunc_triangle(REALTYPE x,REALTYPE a){
    x=fmod(x+0.25,1);
    a=1-a;
    if (a<0.00001) a=0.00001;
    if (x<0.5) x=x*4-1.0;
	else x=(1.0-x)*4-1.0;
    x/=-a;
    if (x<-1.0) x=-1.0;
    if (x>1.0) x=1.0;
    return(x);
};

REALTYPE OscilGen::basefunc_power(REALTYPE x,REALTYPE a){
    x=fmod(x,1);
    if (a<0.00001) a=0.00001;
	else if (a>0.99999) a=0.99999;
    return(pow(x,exp((a-0.5)*10.0))*2.0-1.0);
};

REALTYPE OscilGen::basefunc_gauss(REALTYPE x,REALTYPE a){
    x=fmod(x,1)*2.0-1.0;
    if (a<0.00001) a=0.00001;
    return(exp(-x*x*(exp(a*8)+5.0))*2.0-1.0);
};

REALTYPE OscilGen::basefunc_diode(REALTYPE x,REALTYPE a){
    if (a<0.00001) a=0.00001;
	else if (a>0.99999) a=0.99999;
    a=a*2.0-1.0;
    x=cos((x+0.5)*2.0*PI)-a;
    if (x<0.0) x=0.0;
    return(x/(1.0-a)*2-1.0);
};

REALTYPE OscilGen::basefunc_abssine(REALTYPE x,REALTYPE a){
    x=fmod(x,1);
    if (a<0.00001) a=0.00001;
	else if (a>0.99999) a=0.99999;
    return(sin(pow(x,exp((a-0.5)*5.0))*PI)*2.0-1.0);
};

REALTYPE OscilGen::basefunc_pulsesine(REALTYPE x,REALTYPE a){
    if (a<0.00001) a=0.00001;
    x=(fmod(x,1)-0.5)*exp((a-0.5)*log(128));
    if (x<-0.5) x=-0.5;
	else if (x>0.5) x=0.5;
    x=sin(x*PI*2.0);
    return(x);
};

REALTYPE OscilGen::basefunc_stretchsine(REALTYPE x,REALTYPE a){
    x=fmod(x+0.5,1)*2.0-1.0;
    a=(a-0.5)*4;if (a>0.0) a*=2;
    a=pow(3.0,a);
    REALTYPE b=pow(fabs(x),a);
    if (x<0) b=-b;
    return(-sin(b*PI));
};

REALTYPE OscilGen::basefunc_chirp(REALTYPE x,REALTYPE a){
    x=fmod(x,1.0)*2.0*PI;
    a=(a-0.5)*4;if (a<0.0) a*=2.0;
    a=pow(3.0,a);
    return(sin(x/2.0)*sin(a*x*x));
};

REALTYPE OscilGen::basefunc_absstretchsine(REALTYPE x,REALTYPE a){
    x=fmod(x+0.5,1)*2.0-1.0;
    a=(a-0.5)*9;
    a=pow(3.0,a);
    REALTYPE b=pow(fabs(x),a);
    if (x<0) b=-b;
    return(-pow(sin(b*PI),2));
};

REALTYPE OscilGen::basefunc_chebyshev(REALTYPE x,REALTYPE a){
    a=a*a*a*30.0+1.0;
    return(cos(acos(x*2.0-1.0)*a));
};

REALTYPE OscilGen::basefunc_sqr(REALTYPE x,REALTYPE a){
    a=a*a*a*a*160.0+0.001;
    return(-atan(sin(x*2.0*PI)*a));
};
/* 
 * Base Functions - END
 */


/* 
 * Get the base function
 */
void OscilGen::getbasefunction(REALTYPE *smps){
    int i;    
    REALTYPE par=(Pbasefuncpar+0.5)/128.0;
    if (Pbasefuncpar==64) par=0.5;
    
    REALTYPE basefuncmodulationpar1=Pbasefuncmodulationpar1/127.0,
	     basefuncmodulationpar2=Pbasefuncmodulationpar2/127.0,
	     basefuncmodulationpar3=Pbasefuncmodulationpar3/127.0;

    switch(Pbasefuncmodulation){
        case 1:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*5.0)-1.0)/10.0;
	       basefuncmodulationpar3=floor((pow(2,basefuncmodulationpar3*5.0)-1.0));
	       if (basefuncmodulationpar3<0.9999) basefuncmodulationpar3=-1.0;
	    break;
        case 2:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*5.0)-1.0)/10.0;
	       basefuncmodulationpar3=1.0+floor((pow(2,basefuncmodulationpar3*5.0)-1.0));
    	    break;
	case 3:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*7.0)-1.0)/10.0;
	       basefuncmodulationpar3=0.01+(pow(2,basefuncmodulationpar3*16.0)-1.0)/10.0;
	    break;
    };	

//    printf("%.5f %.5f\n",basefuncmodulationpar1,basefuncmodulationpar3);

    for (i=0;i<OSCIL_SIZE;i++) {
	REALTYPE t=i*1.0/OSCIL_SIZE;

	switch(Pbasefuncmodulation){
	    case 1:t=t*basefuncmodulationpar3+sin((t+basefuncmodulationpar2)*2.0*PI)*basefuncmodulationpar1;//rev
		break;
	    case 2:t=t+sin((t*basefuncmodulationpar3+basefuncmodulationpar2)*2.0*PI)*basefuncmodulationpar1;//sine
		break;
	    case 3:t=t+pow((1.0-cos((t+basefuncmodulationpar2)*2.0*PI))*0.5,basefuncmodulationpar3)*basefuncmodulationpar1;//power
		break;
	};
	
	t=t-floor(t);
	
	switch (Pcurrentbasefunc){
    	    case 1:smps[i]=basefunc_triangle(t,par);
	        break;
	    case 2:smps[i]=basefunc_pulse(t,par);
	        break;
	    case 3:smps[i]=basefunc_saw(t,par);
	        break;
	    case 4:smps[i]=basefunc_power(t,par);
	        break;
	    case 5:smps[i]=basefunc_gauss(t,par);
	        break;
	    case 6:smps[i]=basefunc_diode(t,par);
	        break;
	    case 7:smps[i]=basefunc_abssine(t,par);
	        break;
	    case 8:smps[i]=basefunc_pulsesine(t,par);
	        break;
	    case 9:smps[i]=basefunc_stretchsine(t,par);
	       break;
	    case 10:smps[i]=basefunc_chirp(t,par);
	       break;
	    case 11:smps[i]=basefunc_absstretchsine(t,par);
	       break;
	    case 12:smps[i]=basefunc_chebyshev(t,par);
	       break;
	    case 13:smps[i]=basefunc_sqr(t,par);
	       break;
	    default:smps[i]=-sin(2.0*PI*i/OSCIL_SIZE);
	};
    };
};

/* 
 * Filter the oscillator
 */
void OscilGen::oscilfilter(){
    if (Pfiltertype==0) return;
    REALTYPE par=1.0-Pfilterpar1/128.0;
    REALTYPE par2=Pfilterpar2/127.0;
    REALTYPE max=0.0,tmp=0.0,p2,x;
    for (int i=1;i<OSCIL_SIZE/2;i++){
	REALTYPE gain=1.0;
	switch(Pfiltertype){
	    case 1: gain=pow(1.0-par*par*par*0.99,i);//lp
		    tmp=par2*par2*par2*par2*0.5+0.0001;
		    if (gain<tmp) gain=pow(gain,10.0)/pow(tmp,9.0);
		    break;
	    case 2: gain=1.0-pow(1.0-par*par,i+1);//hp1
		    gain=pow(gain,par2*2.0+0.1);
		    break;
	    case 3: if (par<0.2) par=par*0.25+0.15;
		    gain=1.0-pow(1.0-par*par*0.999+0.001,i*0.05*i+1.0);//hp1b
		    tmp=pow(5.0,par2*2.0);
		    gain=pow(gain,tmp);
		    break;
	    case 4: gain=i+1-pow(2,(1.0-par)*7.5);//bp1
		    gain=1.0/(1.0+gain*gain/(i+1.0));
		    tmp=pow(5.0,par2*2.0);
		    gain=pow(gain,tmp);
		    if (gain<1e-5) gain=1e-5;
		    break;
	    case 5: gain=i+1-pow(2,(1.0-par)*7.5);//bs1
		    gain=pow(atan(gain/(i/10.0+1))/1.57,6);
		    gain=pow(gain,par2*par2*3.9+0.1);
		    break;
	    case 6: tmp=pow(par2,0.33);
		    gain=(i+1>pow(2,(1.0-par)*10)?0.0:1.0)*par2+(1.0-par2);//lp2
		    break;
	    case 7: tmp=pow(par2,0.33);
		    //tmp=1.0-(1.0-par2)*(1.0-par2);
		    gain=(i+1>pow(2,(1.0-par)*7)?1.0:0.0)*par2+(1.0-par2);//hp2
		    if (Pfilterpar1==0) gain=1.0;
		    break;
	    case 8: tmp=pow(par2,0.33);
		    //tmp=1.0-(1.0-par2)*(1.0-par2);
	            gain=(fabs(pow(2,(1.0-par)*7)-i)>i/2+1?0.0:1.0)*par2+(1.0-par2);//bp2
		    break;
	    case 9: tmp=pow(par2,0.33);
		    gain=(fabs(pow(2,(1.0-par)*7)-i)<i/2+1?0.0:1.0)*par2+(1.0-par2);//bs2
		    break;
	    case 10:tmp=pow(5.0,par2*2.0-1.0);
		    tmp=pow(i/32.0,tmp)*32.0;
		    if (Pfilterpar2==64) tmp=i;
		    gain=cos(par*par*PI/2.0*tmp);//cos
		   gain*=gain;
		   break;
	    case 11:tmp=pow(5.0,par2*2.0-1.0);
		    tmp=pow(i/32.0,tmp)*32.0;
		    if (Pfilterpar2==64) tmp=i;
		    gain=sin(par*par*PI/2.0*tmp);//sin
		   gain*=gain;
		   break;
	    case 12:p2=1.0-par+0.2;
		    x=i/(64.0*p2*p2); 
		     if (x<0.0) x=0.0;
		        else if (x>1.0) x=1.0;
		     tmp=pow(1.0-par2,2.0);
		     gain=cos(x*PI)*(1.0-tmp)+1.01+tmp;//low shelf
		    break;
	    case 13:tmp=(int) (pow(2.0,(1.0-par)*7.2));
		    gain=1.0;
		    if (i==(int) (tmp)) gain=pow(2.0,par2*par2*8.0);
   		  break;
	};
	
	
	oscilFFTfreqs.s[i]*=gain;
	oscilFFTfreqs.c[i]*=gain;
	REALTYPE tmp=oscilFFTfreqs.s[i]*oscilFFTfreqs.s[i]+
		     oscilFFTfreqs.c[i]*oscilFFTfreqs.c[i];
	if (max<tmp) max=tmp;
    };

    max=sqrt(max);
    if (max<1e-10) max=1.0;
    REALTYPE imax=1.0/max;
    for (int i=1;i<OSCIL_SIZE/2;i++) {
	oscilFFTfreqs.s[i]*=imax; 
	oscilFFTfreqs.c[i]*=imax; 
    };
};
 
/* 
 * Change the base function
 */
void OscilGen::changebasefunction(){
    if (Pcurrentbasefunc!=0) {
        getbasefunction(tmpsmps);
	fft->smps2freqs(tmpsmps,basefuncFFTfreqs);
	basefuncFFTfreqs.c[0]=0.0;
    } else {
	for (int i=0;i<OSCIL_SIZE/2;i++){
	    basefuncFFTfreqs.s[i]=0.0;
	    basefuncFFTfreqs.c[i]=0.0;
	};
	//in this case basefuncFFTfreqs_ are not used
    }
    oscilprepared=0;
    oldbasefunc=Pcurrentbasefunc;
    oldbasepar=Pbasefuncpar;
    oldbasefuncmodulation=Pbasefuncmodulation;
    oldbasefuncmodulationpar1=Pbasefuncmodulationpar1;
    oldbasefuncmodulationpar2=Pbasefuncmodulationpar2;
    oldbasefuncmodulationpar3=Pbasefuncmodulationpar3;
};

/* 
 * Waveshape
 */
void OscilGen::waveshape(){
    int i;

    oldwaveshapingfunction=Pwaveshapingfunction;
    oldwaveshaping=Pwaveshaping;
    if (Pwaveshapingfunction==0) return;

    oscilFFTfreqs.c[0]=0.0;//remove the DC
    //reduce the amplitude of the freqs near the nyquist
    for (i=1;i<OSCIL_SIZE/8;i++) {
	REALTYPE tmp=i/(OSCIL_SIZE/8.0);
	oscilFFTfreqs.s[OSCIL_SIZE/2-i]*=tmp;
	oscilFFTfreqs.c[OSCIL_SIZE/2-i]*=tmp;
    };
    fft->freqs2smps(oscilFFTfreqs,tmpsmps); 

    //Normalize
    REALTYPE max=0.0;
    for (i=0;i<OSCIL_SIZE;i++) 
	if (max<fabs(tmpsmps[i])) max=fabs(tmpsmps[i]);
    if (max<0.00001) max=1.0;
    max=1.0/max;for (i=0;i<OSCIL_SIZE;i++) tmpsmps[i]*=max;
    
    //Do the waveshaping
    waveshapesmps(OSCIL_SIZE,tmpsmps,Pwaveshapingfunction,Pwaveshaping);
    
    fft->smps2freqs(tmpsmps,oscilFFTfreqs);//perform FFT
};


/* 
 * Do the Frequency Modulation of the Oscil
 */
void OscilGen::modulation(){
    int i;

    oldmodulation=Pmodulation;
    oldmodulationpar1=Pmodulationpar1;
    oldmodulationpar2=Pmodulationpar2;
    oldmodulationpar3=Pmodulationpar3;
    if (Pmodulation==0) return;


    REALTYPE modulationpar1=Pmodulationpar1/127.0,
	     modulationpar2=0.5-Pmodulationpar2/127.0,
	     modulationpar3=Pmodulationpar3/127.0;

    switch(Pmodulation){
        case 1:modulationpar1=(pow(2,modulationpar1*7.0)-1.0)/100.0;
	       modulationpar3=floor((pow(2,modulationpar3*5.0)-1.0));
	       if (modulationpar3<0.9999) modulationpar3=-1.0;
	    break;
        case 2:modulationpar1=(pow(2,modulationpar1*7.0)-1.0)/100.0;
	       modulationpar3=1.0+floor((pow(2,modulationpar3*5.0)-1.0));
    	    break;
	case 3:modulationpar1=(pow(2,modulationpar1*9.0)-1.0)/100.0;
	       modulationpar3=0.01+(pow(2,modulationpar3*16.0)-1.0)/10.0;
	    break;
    };	

    oscilFFTfreqs.c[0]=0.0;//remove the DC
    //reduce the amplitude of the freqs near the nyquist
    for (i=1;i<OSCIL_SIZE/8;i++) {
	REALTYPE tmp=i/(OSCIL_SIZE/8.0);
	oscilFFTfreqs.s[OSCIL_SIZE/2-i]*=tmp;
	oscilFFTfreqs.c[OSCIL_SIZE/2-i]*=tmp;
    };
    fft->freqs2smps(oscilFFTfreqs,tmpsmps);
    int extra_points=2;
    REALTYPE *in=new REALTYPE[OSCIL_SIZE+extra_points];

    //Normalize
    REALTYPE max=0.0;
    for (i=0;i<OSCIL_SIZE;i++) if (max<fabs(tmpsmps[i])) max=fabs(tmpsmps[i]);
    if (max<0.00001) max=1.0;
    max=1.0/max;for (i=0;i<OSCIL_SIZE;i++) in[i]=tmpsmps[i]*max;
    for (i=0;i<extra_points;i++) in[i+OSCIL_SIZE]=tmpsmps[i]*max;
    
    //Do the modulation
    for (i=0;i<OSCIL_SIZE;i++) {
	REALTYPE t=i*1.0/OSCIL_SIZE;

	switch(Pmodulation){
	    case 1:t=t*modulationpar3+sin((t+modulationpar2)*2.0*PI)*modulationpar1;//rev
		break;
	    case 2:t=t+sin((t*modulationpar3+modulationpar2)*2.0*PI)*modulationpar1;//sine
		break;
	    case 3:t=t+pow((1.0-cos((t+modulationpar2)*2.0*PI))*0.5,modulationpar3)*modulationpar1;//power
		break;
	};
	
	t=(t-floor(t))*OSCIL_SIZE;
	
	int poshi=(int) t;
	REALTYPE poslo=t-floor(t);

	tmpsmps[i]=in[poshi]*(1.0-poslo)+in[poshi+1]*poslo;
    };

    delete(in);
    fft->smps2freqs(tmpsmps,oscilFFTfreqs);//perform FFT
};



/* 
 * Adjust the spectrum
 */
void OscilGen::spectrumadjust(){
    if (Psatype==0) return;
    REALTYPE par=Psapar/127.0;
    switch(Psatype){
	case 1: par=1.0-par*2.0;
		if (par>=0.0) par=pow(5.0,par);
		    else par=pow(8.0,par);
		break;
	case 2: par=pow(10.0,(1.0-par)*3.0)*0.25;
		break;
	case 3: par=pow(10.0,(1.0-par)*3.0)*0.25;
		break;
    };


    REALTYPE max=0.0;
    for (int i=0;i<OSCIL_SIZE/2;i++){ 
	REALTYPE tmp=pow(oscilFFTfreqs.c[i],2)+pow(oscilFFTfreqs.s[i],2.0);
	if (max<tmp) max=tmp;
    };
    max=sqrt(max)/OSCIL_SIZE*2.0;
    if (max<1e-8) max=1.0;

    
    for (int i=0;i<OSCIL_SIZE/2;i++){
        REALTYPE mag=sqrt(pow(oscilFFTfreqs.s[i],2)+pow(oscilFFTfreqs.c[i],2.0))/max;
	REALTYPE phase=atan2(oscilFFTfreqs.s[i],oscilFFTfreqs.c[i]);
	
	switch (Psatype){
	    case 1: mag=pow(mag,par);
		    break;
	    case 2: if (mag<par) mag=0.0;
		    break;
	    case 3: mag/=par;
		    if (mag>1.0) mag=1.0;
		    break;
	};
	oscilFFTfreqs.c[i]=mag*cos(phase);
	oscilFFTfreqs.s[i]=mag*sin(phase);
    };
    
};

void OscilGen::shiftharmonics(){
    if (Pharmonicshift==0) return;
    
    REALTYPE hc,hs;
    int harmonicshift=-Pharmonicshift;
    
    if (harmonicshift>0){
	for (int i=OSCIL_SIZE/2-2;i>=0;i--){ 
	    int oldh=i-harmonicshift;
	    if (oldh<0){
		hc=0.0;
		hs=0.0;
	    } else {
		hc=oscilFFTfreqs.c[oldh+1];
		hs=oscilFFTfreqs.s[oldh+1];
	    };
	    oscilFFTfreqs.c[i+1]=hc;
	    oscilFFTfreqs.s[i+1]=hs;
	};
    } else {
	for (int i=0;i<OSCIL_SIZE/2-1;i++){ 
	    int oldh=i+abs(harmonicshift);
	    if (oldh>=(OSCIL_SIZE/2-1)){
		hc=0.0;
		hs=0.0;
	    } else {
		hc=oscilFFTfreqs.c[oldh+1];
		hs=oscilFFTfreqs.s[oldh+1];
		if (fabs(hc)<0.000001) hc=0.0;
		if (fabs(hs)<0.000001) hs=0.0;
	    };
	    
	    oscilFFTfreqs.c[i+1]=hc;
	    oscilFFTfreqs.s[i+1]=hs;
	};
    };
    
    oscilFFTfreqs.c[0]=0.0;
};

/* 
 * Prepare the Oscillator
 */
void OscilGen::prepare(){
   int i,j,k;
   REALTYPE a,b,c,d,hmagnew;
  
   if ((oldbasepar!=Pbasefuncpar)||(oldbasefunc!=Pcurrentbasefunc)||
	(oldbasefuncmodulation!=Pbasefuncmodulation)||
        (oldbasefuncmodulationpar1!=Pbasefuncmodulationpar1)||
	(oldbasefuncmodulationpar2!=Pbasefuncmodulationpar2)||
	(oldbasefuncmodulationpar3!=Pbasefuncmodulationpar3)) 
	 changebasefunction();

   for (i=0;i<MAX_AD_HARMONICS;i++) hphase[i]=(Phphase[i]-64.0)/64.0*PI/(i+1);

   for (i=0;i<MAX_AD_HARMONICS;i++){
      hmagnew=1.0-fabs(Phmag[i]/64.0-1.0);
      switch(Phmagtype){
	case 1:hmag[i]=exp(hmagnew*log(0.01)); break;
	case 2:hmag[i]=exp(hmagnew*log(0.001));break;
	case 3:hmag[i]=exp(hmagnew*log(0.0001));break;
	case 4:hmag[i]=exp(hmagnew*log(0.00001));break;
	default:hmag[i]=1.0-hmagnew;
	        break; 
      };

      if (Phmag[i]<64) hmag[i]=-hmag[i];
   };
    
   //remove the harmonics where Phmag[i]==64
   for (i=0;i<MAX_AD_HARMONICS;i++) if (Phmag[i]==64) hmag[i]=0.0;


   for (i=0;i<OSCIL_SIZE/2;i++) {
      oscilFFTfreqs.c[i]=0.0;
      oscilFFTfreqs.s[i]=0.0;
   };
   if (Pcurrentbasefunc==0) {//the sine case
	for (i=0;i<MAX_AD_HARMONICS;i++){
	    oscilFFTfreqs.c[i+1]=-hmag[i]*sin(hphase[i]*(i+1))/2.0;
	    oscilFFTfreqs.s[i+1]=hmag[i]*cos(hphase[i]*(i+1))/2.0;
	};
   } else {
	for (j=0;j<MAX_AD_HARMONICS;j++){
	    if (Phmag[j]==64) continue;
	    for (i=1;i<OSCIL_SIZE/2;i++){
		k=i*(j+1);if (k>=OSCIL_SIZE/2) break;
		a=basefuncFFTfreqs.c[i];
		b=basefuncFFTfreqs.s[i];
		c=hmag[j]*cos(hphase[j]*k);
		d=hmag[j]*sin(hphase[j]*k);
		oscilFFTfreqs.c[k]+=a*c-b*d;
		oscilFFTfreqs.s[k]+=a*d+b*c;
	    };
	};

   };

   if (Pharmonicshiftfirst!=0)  shiftharmonics();



   if (Pfilterbeforews==0){
        waveshape();
	oscilfilter();
    } else {
	oscilfilter();
        waveshape();
    };

   modulation();
   spectrumadjust();
   if (Pharmonicshiftfirst==0)  shiftharmonics();

   oscilFFTfreqs.c[0]=0.0;

   oldhmagtype=Phmagtype;
   oldharmonicshift=Pharmonicshift+Pharmonicshiftfirst*256;

   oscilprepared=1;
};

void OscilGen::adaptiveharmonic(FFTFREQS f,REALTYPE freq){
    if ((Padaptiveharmonics==0)/*||(freq<1.0)*/) return;
    if (freq<1.0) freq=440.0;

    FFTFREQS inf;
    newFFTFREQS(&inf,OSCIL_SIZE/2);
    for (int i=0;i<OSCIL_SIZE/2;i++) {
	inf.s[i]=f.s[i];
	inf.c[i]=f.c[i];
	f.s[i]=0.0;
	f.c[i]=0.0;
    };
    inf.c[0]=0.0;inf.s[0]=0.0;    
    
    REALTYPE hc=0.0,hs=0.0;
    REALTYPE basefreq=30.0*pow(10.0,Padaptiveharmonicsbasefreq/128.0);
    REALTYPE power=(Padaptiveharmonicspower+1.0)/101.0;
    
    REALTYPE rap=freq/basefreq;

    rap=pow(rap,power);

    bool down=false;
    if (rap>1.0) {
	rap=1.0/rap;
	down=true;
    };
    
    for (int i=0;i<OSCIL_SIZE/2-2;i++){ 
	REALTYPE h=i*rap;
        int high=(int)(i*rap);
	REALTYPE low=fmod(h,1.0);

        if (high>=(OSCIL_SIZE/2-2)){
	    break;
	} else {
	    if (down){
		f.c[high]+=inf.c[i]*(1.0-low);
		f.s[high]+=inf.s[i]*(1.0-low);
		f.c[high+1]+=inf.c[i]*low;
		f.s[high+1]+=inf.s[i]*low;
	    } else {
		hc=inf.c[high]*(1.0-low)+inf.c[high+1]*low;
		hs=inf.s[high]*(1.0-low)+inf.s[high+1]*low;
	    };
	    if (fabs(hc)<0.000001) hc=0.0;
	    if (fabs(hs)<0.000001) hs=0.0;
	};
	
	if (!down){    
	    if (i==0) {//corect the aplitude of the first harmonic
		hc*=rap;
		hs*=rap;
	    };
	    f.c[i]=hc;
	    f.s[i]=hs;
	};
    };
    
    f.c[1]+=f.c[0];f.s[1]+=f.s[0];
    f.c[0]=0.0;f.s[0]=0.0;    
    deleteFFTFREQS(&inf);
};

void OscilGen::adaptiveharmonicpostprocess(REALTYPE *f,int size){
    if (Padaptiveharmonics<=1) return;
    REALTYPE *inf=new REALTYPE[size];
    REALTYPE par=Padaptiveharmonicspar*0.01;
    par=1.0-pow((1.0-par),1.5);
    
    for (int i=0;i<size;i++) {
	inf[i]=f[i]*par;
	f[i]=f[i]*(1.0-par);
    };

    
    if (Padaptiveharmonics==2){//2n+1
        for (int i=0;i<size;i++) if ((i%2)==0) f[i]+=inf[i];//i=0 pt prima armonica,etc.
    } else{//celelalte moduri
        int nh=(Padaptiveharmonics-3)/2+2;
        int sub_vs_add=(Padaptiveharmonics-3)%2;
	if (sub_vs_add==0){
    	    for (int i=0;i<size;i++) {
		if (((i+1)%nh)==0){
		    f[i]+=inf[i];
		};
	    };
        } else {
    	    for (int i=0;i<size/nh-1;i++) {
		f[(i+1)*nh-1]+=inf[i];
	    };
	};
    };

    delete(inf);
};



/* 
 * Get the oscillator function
 */
short int OscilGen::get(REALTYPE *smps,REALTYPE freqHz){
    return(this->get(smps,freqHz,0));
};

void OscilGen::newrandseed(unsigned int randseed){
    this->randseed=randseed;
};

/* 
 * Get the oscillator function
 */
short int OscilGen::get(REALTYPE *smps,REALTYPE freqHz,int resonance){
    int i;
    int nyquist,outpos;
    
    if ((oldbasepar!=Pbasefuncpar)||(oldbasefunc!=Pcurrentbasefunc)||(oldhmagtype!=Phmagtype)
	||(oldwaveshaping!=Pwaveshaping)||(oldwaveshapingfunction!=Pwaveshapingfunction)) oscilprepared=0;
    if (oldfilterpars!=Pfiltertype*256+Pfilterpar1+Pfilterpar2*65536+Pfilterbeforews*16777216){ 
	oscilprepared=0;
	oldfilterpars=Pfiltertype*256+Pfilterpar1+Pfilterpar2*65536+Pfilterbeforews*16777216;
    };
    if (oldsapars!=Psatype*256+Psapar){ 
	oscilprepared=0;
	oldsapars=Psatype*256+Psapar;
    };

    if ((oldbasefuncmodulation!=Pbasefuncmodulation)||
        (oldbasefuncmodulationpar1!=Pbasefuncmodulationpar1)||
	(oldbasefuncmodulationpar2!=Pbasefuncmodulationpar2)||
	(oldbasefuncmodulationpar3!=Pbasefuncmodulationpar3)) 
	    oscilprepared=0;

    if ((oldmodulation!=Pmodulation)||
        (oldmodulationpar1!=Pmodulationpar1)||
	(oldmodulationpar2!=Pmodulationpar2)||
	(oldmodulationpar3!=Pmodulationpar3)) 
	    oscilprepared=0;

    if (oldharmonicshift!=Pharmonicshift+Pharmonicshiftfirst*256) oscilprepared=0;
    
    if (oscilprepared!=1) prepare();

    outpos=(int)((RND*2.0-1.0)*(REALTYPE) OSCIL_SIZE*(Prand-64.0)/64.0);
    outpos=(outpos+2*OSCIL_SIZE) % OSCIL_SIZE;


    for (i=0;i<OSCIL_SIZE/2;i++){
	outoscilFFTfreqs.c[i]=0.0;
	outoscilFFTfreqs.s[i]=0.0;
    };

    nyquist=(int)(0.5*SAMPLE_RATE/fabs(freqHz))+2;
    if (ADvsPAD) nyquist=(int)(OSCIL_SIZE/2);
    if (nyquist>OSCIL_SIZE/2) nyquist=OSCIL_SIZE/2;
    
    
    int realnyquist=nyquist;
    
    if (Padaptiveharmonics!=0) nyquist=OSCIL_SIZE/2;
    for (i=1;i<nyquist-1;i++) {
        outoscilFFTfreqs.c[i]=oscilFFTfreqs.c[i];
        outoscilFFTfreqs.s[i]=oscilFFTfreqs.s[i];
    };

    adaptiveharmonic(outoscilFFTfreqs,freqHz);
    adaptiveharmonicpostprocess(&outoscilFFTfreqs.c[1],OSCIL_SIZE/2-1);
    adaptiveharmonicpostprocess(&outoscilFFTfreqs.s[1],OSCIL_SIZE/2-1);

    nyquist=realnyquist;
    if (Padaptiveharmonics){//do the antialiasing in the case of adaptive harmonics
        for (i=nyquist;i<OSCIL_SIZE/2;i++) {
	    outoscilFFTfreqs.s[i]=0;
	    outoscilFFTfreqs.c[i]=0;
	};
    };

    // Randomness (each harmonic), the block type is computed 
    // in ADnote by setting start position according to this setting
    if ((Prand>64)&&(freqHz>=0.0)&&(!ADvsPAD)){
        REALTYPE rnd,angle,a,b,c,d;
        rnd=PI*pow((Prand-64.0)/64.0,2.0);
        for (i=1;i<nyquist-1;i++){//to Nyquist only for AntiAliasing
    	    angle=rnd*i*RND;
	    a=outoscilFFTfreqs.c[i];
	    b=outoscilFFTfreqs.s[i];
	    c=cos(angle);
	    d=sin(angle);
	    outoscilFFTfreqs.c[i]=a*c-b*d;
	    outoscilFFTfreqs.s[i]=a*d+b*c;
	};	
    };

    //Harmonic Amplitude Randomness
    if ((freqHz>0.1)&&(!ADvsPAD)) {
	unsigned int realrnd=rand();
	srand(randseed);
	REALTYPE power=Pamprandpower/127.0;
	REALTYPE normalize=1.0/(1.2-power);
	switch (Pamprandtype){
	    case 1: power=power*2.0-0.5;
		    power=pow(15.0,power);
		    for (i=1;i<nyquist-1;i++){
    	    		REALTYPE amp=pow(RND,power)*normalize;
			outoscilFFTfreqs.c[i]*=amp;
			outoscilFFTfreqs.s[i]*=amp;
		    };
		    break;
	    case 2: power=power*2.0-0.5;
		    power=pow(15.0,power)*2.0;
		    REALTYPE rndfreq=2*PI*RND;
		    for (i=1;i<nyquist-1;i++){
    	    		REALTYPE amp=pow(fabs(sin(i*rndfreq)),power)*normalize;
			outoscilFFTfreqs.c[i]*=amp;
			outoscilFFTfreqs.s[i]*=amp;
		    };
		    break;
	};	
	srand(realrnd+1);
    };

    if ((freqHz>0.1)&&(resonance!=0)) res->applyres(nyquist-1,outoscilFFTfreqs,freqHz);

    //Full RMS normalize
    REALTYPE sum=0;
    for (int j=1;j<OSCIL_SIZE/2;j++) {
        REALTYPE term=outoscilFFTfreqs.c[j]*outoscilFFTfreqs.c[j]
	    +outoscilFFTfreqs.s[j]*outoscilFFTfreqs.s[j];
        sum+=term;
    };
    if (sum<0.000001) sum=1.0;	
    sum=1.0/sqrt(sum);
    for (int j=1;j<OSCIL_SIZE/2;j++) {
	outoscilFFTfreqs.c[j]*=sum; 
	outoscilFFTfreqs.s[j]*=sum; 
    };
   

    if ((ADvsPAD)&&(freqHz>0.1)){//in this case the smps will contain the freqs
        for (i=1;i<OSCIL_SIZE/2;i++) smps[i-1]=sqrt(outoscilFFTfreqs.c[i]*outoscilFFTfreqs.c[i]
		+outoscilFFTfreqs.s[i]*outoscilFFTfreqs.s[i]);
    } else {
	fft->freqs2smps(outoscilFFTfreqs,smps);
        for (i=0;i<OSCIL_SIZE;i++) smps[i]*=0.25;//correct the amplitude
    };

    if (Prand<64) return(outpos);
	else return(0);
};


/* 
 * Get the spectrum of the oscillator for the UI
 */
void OscilGen::getspectrum(int n, REALTYPE *spc,int what){
    if (n>OSCIL_SIZE/2) n=OSCIL_SIZE/2;

    for (int i=1;i<n;i++){
	if (what==0){
	    spc[i-1]=sqrt(oscilFFTfreqs.c[i]*oscilFFTfreqs.c[i]
	              +oscilFFTfreqs.s[i]*oscilFFTfreqs.s[i]);
	} else {
	    if (Pcurrentbasefunc==0) spc[i-1]=((i==1)?(1.0):(0.0));
	    else spc[i-1]=sqrt(basefuncFFTfreqs.c[i]*basefuncFFTfreqs.c[i]+
	    	 basefuncFFTfreqs.s[i]*basefuncFFTfreqs.s[i]);
	};
    };
    
    if (what==0) {
        for (int i=0;i<n;i++) outoscilFFTfreqs.s[i]=outoscilFFTfreqs.c[i]=spc[i+1];
	for (int i=n;i<OSCIL_SIZE/2;i++) outoscilFFTfreqs.s[i]=outoscilFFTfreqs.c[i]=0.0;
	adaptiveharmonic(outoscilFFTfreqs,0.0);
	for (int i=1;i<n;i++) spc[i-1]=outoscilFFTfreqs.s[i];
	adaptiveharmonicpostprocess(spc,n-1);
    };
};


/* 
 * Convert the oscillator as base function
 */
void OscilGen::useasbase(){
   int i;

   for (i=0;i<OSCIL_SIZE/2;i++) {
       basefuncFFTfreqs.c[i]=oscilFFTfreqs.c[i];
       basefuncFFTfreqs.s[i]=oscilFFTfreqs.s[i];
   };

   oldbasefunc=Pcurrentbasefunc=127;

   prepare();
};


/* 
 * Get the base function for UI
 */
void OscilGen::getcurrentbasefunction(REALTYPE *smps){
    if (Pcurrentbasefunc!=0) {
	fft->freqs2smps(basefuncFFTfreqs,smps);
    } else getbasefunction(smps);//the sine case
};


void OscilGen::add2XML(XMLwrapper *xml){
    xml->addpar("harmonic_mag_type",Phmagtype);

    xml->addpar("base_function",Pcurrentbasefunc);
    xml->addpar("base_function_par",Pbasefuncpar);
    xml->addpar("base_function_modulation",Pbasefuncmodulation);
    xml->addpar("base_function_modulation_par1",Pbasefuncmodulationpar1);
    xml->addpar("base_function_modulation_par2",Pbasefuncmodulationpar2);
    xml->addpar("base_function_modulation_par3",Pbasefuncmodulationpar3);

    xml->addpar("modulation",Pmodulation);
    xml->addpar("modulation_par1",Pmodulationpar1);
    xml->addpar("modulation_par2",Pmodulationpar2);
    xml->addpar("modulation_par3",Pmodulationpar3);

    xml->addpar("wave_shaping",Pwaveshaping);
    xml->addpar("wave_shaping_function",Pwaveshapingfunction);

    xml->addpar("filter_type",Pfiltertype);
    xml->addpar("filter_par1",Pfilterpar1);
    xml->addpar("filter_par2",Pfilterpar2);
    xml->addpar("filter_before_wave_shaping",Pfilterbeforews);

    xml->addpar("spectrum_adjust_type",Psatype);
    xml->addpar("spectrum_adjust_par",Psapar);

    xml->addpar("rand",Prand);
    xml->addpar("amp_rand_type",Pamprandtype);
    xml->addpar("amp_rand_power",Pamprandpower);

    xml->addpar("harmonic_shift",Pharmonicshift);
    xml->addparbool("harmonic_shift_first",Pharmonicshiftfirst);

    xml->addpar("adaptive_harmonics",Padaptiveharmonics);
    xml->addpar("adaptive_harmonics_base_frequency",Padaptiveharmonicsbasefreq);
    xml->addpar("adaptive_harmonics_power",Padaptiveharmonicspower);

    xml->beginbranch("HARMONICS");
	for (int n=0;n<MAX_AD_HARMONICS;n++){
	    if ((Phmag[n]==64)&&(Phphase[n]==64)) continue;
	    xml->beginbranch("HARMONIC",n+1);
		xml->addpar("mag",Phmag[n]);
		xml->addpar("phase",Phphase[n]);
	    xml->endbranch();
	};
    xml->endbranch();
    
    if (Pcurrentbasefunc==127){
	REALTYPE max=0.0;

	for (int i=0;i<OSCIL_SIZE/2;i++){
	    if (max<fabs(basefuncFFTfreqs.c[i])) max=fabs(basefuncFFTfreqs.c[i]);
	    if (max<fabs(basefuncFFTfreqs.s[i])) max=fabs(basefuncFFTfreqs.s[i]);
	};
	if (max<0.00000001) max=1.0;

	xml->beginbranch("BASE_FUNCTION");
	    for (int i=1;i<OSCIL_SIZE/2;i++){
		REALTYPE xc=basefuncFFTfreqs.c[i]/max;
	        REALTYPE xs=basefuncFFTfreqs.s[i]/max;
		if ((fabs(xs)>0.00001)&&(fabs(xs)>0.00001)){
		    xml->beginbranch("BF_HARMONIC",i);
			xml->addparreal("cos",xc);
			xml->addparreal("sin",xs);
		    xml->endbranch();
		};
	    };
	xml->endbranch();
    };
};


void OscilGen::getfromXML(XMLwrapper *xml){

    Phmagtype=xml->getpar127("harmonic_mag_type",Phmagtype);

    Pcurrentbasefunc=xml->getpar127("base_function",Pcurrentbasefunc);
    Pbasefuncpar=xml->getpar127("base_function_par",Pbasefuncpar);

    Pbasefuncmodulation=xml->getpar127("base_function_modulation",Pbasefuncmodulation);
    Pbasefuncmodulationpar1=xml->getpar127("base_function_modulation_par1",Pbasefuncmodulationpar1);
    Pbasefuncmodulationpar2=xml->getpar127("base_function_modulation_par2",Pbasefuncmodulationpar2);
    Pbasefuncmodulationpar3=xml->getpar127("base_function_modulation_par3",Pbasefuncmodulationpar3);

    Pmodulation=xml->getpar127("modulation",Pmodulation);
    Pmodulationpar1=xml->getpar127("modulation_par1",Pmodulationpar1);
    Pmodulationpar2=xml->getpar127("modulation_par2",Pmodulationpar2);
    Pmodulationpar3=xml->getpar127("modulation_par3",Pmodulationpar3);

    Pwaveshaping=xml->getpar127("wave_shaping",Pwaveshaping);
    Pwaveshapingfunction=xml->getpar127("wave_shaping_function",Pwaveshapingfunction);

    Pfiltertype=xml->getpar127("filter_type",Pfiltertype);
    Pfilterpar1=xml->getpar127("filter_par1",Pfilterpar1);
    Pfilterpar2=xml->getpar127("filter_par2",Pfilterpar2);
    Pfilterbeforews=xml->getpar127("filter_before_wave_shaping",Pfilterbeforews);

    Psatype=xml->getpar127("spectrum_adjust_type",Psatype);
    Psapar=xml->getpar127("spectrum_adjust_par",Psapar);

    Prand=xml->getpar127("rand",Prand);
    Pamprandtype=xml->getpar127("amp_rand_type",Pamprandtype);
    Pamprandpower=xml->getpar127("amp_rand_power",Pamprandpower);

    Pharmonicshift=xml->getpar("harmonic_shift",Pharmonicshift,-64,64);
    Pharmonicshiftfirst=xml->getparbool("harmonic_shift_first",Pharmonicshiftfirst);

    Padaptiveharmonics=xml->getpar("adaptive_harmonics",Padaptiveharmonics,0,127);
    Padaptiveharmonicsbasefreq=xml->getpar("adaptive_harmonics_base_frequency",Padaptiveharmonicsbasefreq,0,255);
    Padaptiveharmonicspower=xml->getpar("adaptive_harmonics_power",Padaptiveharmonicspower,0,200);


    if (xml->enterbranch("HARMONICS")){
	Phmag[0]=64;Phphase[0]=64;
	for (int n=0;n<MAX_AD_HARMONICS;n++){
	    if (xml->enterbranch("HARMONIC",n+1)==0) continue;
		Phmag[n]=xml->getpar127("mag",64);
		Phphase[n]=xml->getpar127("phase",64);
	    xml->exitbranch();
	};
     xml->exitbranch();
    };
    
    if (Pcurrentbasefunc!=0) changebasefunction();
    
    
    if (xml->enterbranch("BASE_FUNCTION")){
	    for (int i=1;i<OSCIL_SIZE/2;i++){
		if (xml->enterbranch("BF_HARMONIC",i)){
			basefuncFFTfreqs.c[i]=xml->getparreal("cos",0.0);
			basefuncFFTfreqs.s[i]=xml->getparreal("sin",0.0);
		    xml->exitbranch();
		};


	    };
	xml->exitbranch();

	REALTYPE max=0.0;

	basefuncFFTfreqs.c[0]=0.0;
	for (int i=0;i<OSCIL_SIZE/2;i++) {
	    if (max<fabs(basefuncFFTfreqs.c[i])) max=fabs(basefuncFFTfreqs.c[i]);
	    if (max<fabs(basefuncFFTfreqs.s[i])) max=fabs(basefuncFFTfreqs.s[i]);
	};
	if (max<0.00000001) max=1.0;

	for (int i=0;i<OSCIL_SIZE/2;i++) {
	    if (basefuncFFTfreqs.c[i]) basefuncFFTfreqs.c[i]/=max;
	    if (basefuncFFTfreqs.s[i]) basefuncFFTfreqs.s[i]/=max;
	};
    };
};