//========================================================= // MusE // Linux Music Editor // $Id: dspXMM.cpp,v 1.1.2.2 2009/12/20 00:04:25 spamatica Exp $ // // (C) Copyright 2007-2009 Werner Schweer (ws@seh.de) // file originally from Ardour DAW project by Paul Davis (c) 2007 // licensed through GPL // Original author Sampo Savolainen // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License // as published by the Free Software Foundation; version 2 of // the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. //====================================================================== #include <xmmintrin.h> void x86_sse_find_peaks(float *buf, unsigned nframes, float *min, float *max) { __m128 current_max, current_min, work; // Load max and min values into all four slots of the XMM registers current_min = _mm_set1_ps(*min); current_max = _mm_set1_ps(*max); // Work input until "buf" reaches 16 byte alignment while ( ((unsigned long)buf) % 16 != 0 && nframes > 0) { // Load the next float into the work buffer work = _mm_set1_ps(*buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf++; nframes--; } // use 64 byte prefetch for quadruple quads while (nframes >= 16) { __builtin_prefetch(buf+64,0,0); work = _mm_load_ps(buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf+=4; work = _mm_load_ps(buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf+=4; work = _mm_load_ps(buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf+=4; work = _mm_load_ps(buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf+=4; nframes-=16; } // work through aligned buffers while (nframes >= 4) { work = _mm_load_ps(buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf+=4; nframes-=4; } // work through the rest < 4 samples while ( nframes > 0) { // Load the next float into the work buffer work = _mm_set1_ps(*buf); current_min = _mm_min_ps(current_min, work); current_max = _mm_max_ps(current_max, work); buf++; nframes--; } // Find min & max value in current_max through shuffle tricks work = current_min; work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(2, 3, 0, 1)); work = _mm_min_ps (work, current_min); current_min = work; work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(1, 0, 3, 2)); work = _mm_min_ps (work, current_min); _mm_store_ss(min, work); work = current_max; work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(2, 3, 0, 1)); work = _mm_max_ps (work, current_max); current_max = work; work = _mm_shuffle_ps(work, work, _MM_SHUFFLE(1, 0, 3, 2)); work = _mm_max_ps (work, current_max); _mm_store_ss(max, work); }