From e40fc849149dd97c248866a4a1d026dda5e57b62 Mon Sep 17 00:00:00 2001 From: Robert Jonsson Date: Mon, 7 Mar 2011 19:01:11 +0000 Subject: clean3 --- .../synti/zynaddsubfx/Synth/OscilGen.C | 1182 ++++++++++++++++++++ 1 file changed, 1182 insertions(+) create mode 100644 attic/muse_qt4_evolution/synti/zynaddsubfx/Synth/OscilGen.C (limited to 'attic/muse_qt4_evolution/synti/zynaddsubfx/Synth/OscilGen.C') diff --git a/attic/muse_qt4_evolution/synti/zynaddsubfx/Synth/OscilGen.C b/attic/muse_qt4_evolution/synti/zynaddsubfx/Synth/OscilGen.C new file mode 100644 index 00000000..4e6a4dd3 --- /dev/null +++ b/attic/muse_qt4_evolution/synti/zynaddsubfx/Synth/OscilGen.C @@ -0,0 +1,1182 @@ +/* + ZynAddSubFX - a software synthesizer + + OscilGen.C - Waveform generator for ADnote + Copyright (C) 2002-2005 Nasca Octavian Paul + Author: Nasca Octavian Paul + + This program is free software; you can redistribute it and/or modify + it under the terms of version 2 of the GNU General Public License + as published by the Free Software Foundation. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License (version 2) for more details. + + You should have received a copy of the GNU General Public License (version 2) + along with this program; if not, write to the Free Software Foundation, + Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +*/ + +#include +#include +#include + +#include "OscilGen.h" +#include "../Effects/Distorsion.h" + +REALTYPE *OscilGen::tmpsmps;//this array stores some termporary data and it has SOUND_BUFFER_SIZE elements +FFTFREQS OscilGen::outoscilFFTfreqs; + + +OscilGen::OscilGen(FFTwrapper *fft_,Resonance *res_):Presets(){ + setpresettype("Poscilgen"); + fft=fft_; + res=res_; + newFFTFREQS(&oscilFFTfreqs,OSCIL_SIZE/2); + newFFTFREQS(&basefuncFFTfreqs,OSCIL_SIZE/2); + + randseed=1; + ADvsPAD=false; + + defaults(); +}; + +OscilGen::~OscilGen(){ + deleteFFTFREQS(&basefuncFFTfreqs); + deleteFFTFREQS(&oscilFFTfreqs); +}; + + +void OscilGen::defaults(){ + + oldbasefunc=0;oldbasepar=64;oldhmagtype=0;oldwaveshapingfunction=0;oldwaveshaping=64; + oldbasefuncmodulation=0;oldharmonicshift=0;oldbasefuncmodulationpar1=0;oldbasefuncmodulationpar2=0;oldbasefuncmodulationpar3=0; + oldmodulation=0;oldmodulationpar1=0;oldmodulationpar2=0;oldmodulationpar3=0; + + for (int i=0;ismps2freqs(oscil,freqs); + delete(fft); + + REALTYPE max=0.0; + + mag[0]=0; + phase[0]=0; + for (int i=0;i127) Phphase[i]=127; + + if (Phmag[i]==64) Phphase[i]=64; + }; + deleteFFTFREQS(&freqs); + prepare(); +}; + +/* + * Base Functions - START + */ +REALTYPE OscilGen::basefunc_pulse(REALTYPE x,REALTYPE a){ + return((fmod(x,1.0)0.99999) a=0.99999; + x=fmod(x,1); + if (x1.0) x=1.0; + return(x); +}; + +REALTYPE OscilGen::basefunc_power(REALTYPE x,REALTYPE a){ + x=fmod(x,1); + if (a<0.00001) a=0.00001; + else if (a>0.99999) a=0.99999; + return(pow(x,exp((a-0.5)*10.0))*2.0-1.0); +}; + +REALTYPE OscilGen::basefunc_gauss(REALTYPE x,REALTYPE a){ + x=fmod(x,1)*2.0-1.0; + if (a<0.00001) a=0.00001; + return(exp(-x*x*(exp(a*8)+5.0))*2.0-1.0); +}; + +REALTYPE OscilGen::basefunc_diode(REALTYPE x,REALTYPE a){ + if (a<0.00001) a=0.00001; + else if (a>0.99999) a=0.99999; + a=a*2.0-1.0; + x=cos((x+0.5)*2.0*PI)-a; + if (x<0.0) x=0.0; + return(x/(1.0-a)*2-1.0); +}; + +REALTYPE OscilGen::basefunc_abssine(REALTYPE x,REALTYPE a){ + x=fmod(x,1); + if (a<0.00001) a=0.00001; + else if (a>0.99999) a=0.99999; + return(sin(pow(x,exp((a-0.5)*5.0))*PI)*2.0-1.0); +}; + +REALTYPE OscilGen::basefunc_pulsesine(REALTYPE x,REALTYPE a){ + if (a<0.00001) a=0.00001; + x=(fmod(x,1)-0.5)*exp((a-0.5)*log(128)); + if (x<-0.5) x=-0.5; + else if (x>0.5) x=0.5; + x=sin(x*PI*2.0); + return(x); +}; + +REALTYPE OscilGen::basefunc_stretchsine(REALTYPE x,REALTYPE a){ + x=fmod(x+0.5,1)*2.0-1.0; + a=(a-0.5)*4;if (a>0.0) a*=2; + a=pow(3.0,a); + REALTYPE b=pow(fabs(x),a); + if (x<0) b=-b; + return(-sin(b*PI)); +}; + +REALTYPE OscilGen::basefunc_chirp(REALTYPE x,REALTYPE a){ + x=fmod(x,1.0)*2.0*PI; + a=(a-0.5)*4;if (a<0.0) a*=2.0; + a=pow(3.0,a); + return(sin(x/2.0)*sin(a*x*x)); +}; + +REALTYPE OscilGen::basefunc_absstretchsine(REALTYPE x,REALTYPE a){ + x=fmod(x+0.5,1)*2.0-1.0; + a=(a-0.5)*9; + a=pow(3.0,a); + REALTYPE b=pow(fabs(x),a); + if (x<0) b=-b; + return(-pow(sin(b*PI),2)); +}; + +REALTYPE OscilGen::basefunc_chebyshev(REALTYPE x,REALTYPE a){ + a=a*a*a*30.0+1.0; + return(cos(acos(x*2.0-1.0)*a)); +}; + +REALTYPE OscilGen::basefunc_sqr(REALTYPE x,REALTYPE a){ + a=a*a*a*a*160.0+0.001; + return(-atan(sin(x*2.0*PI)*a)); +}; +/* + * Base Functions - END + */ + + +/* + * Get the base function + */ +void OscilGen::getbasefunction(REALTYPE *smps){ + int i; + REALTYPE par=(Pbasefuncpar+0.5)/128.0; + if (Pbasefuncpar==64) par=0.5; + + REALTYPE basefuncmodulationpar1=Pbasefuncmodulationpar1/127.0, + basefuncmodulationpar2=Pbasefuncmodulationpar2/127.0, + basefuncmodulationpar3=Pbasefuncmodulationpar3/127.0; + + switch(Pbasefuncmodulation){ + case 1:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*5.0)-1.0)/10.0; + basefuncmodulationpar3=floor((pow(2,basefuncmodulationpar3*5.0)-1.0)); + if (basefuncmodulationpar3<0.9999) basefuncmodulationpar3=-1.0; + break; + case 2:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*5.0)-1.0)/10.0; + basefuncmodulationpar3=1.0+floor((pow(2,basefuncmodulationpar3*5.0)-1.0)); + break; + case 3:basefuncmodulationpar1=(pow(2,basefuncmodulationpar1*7.0)-1.0)/10.0; + basefuncmodulationpar3=0.01+(pow(2,basefuncmodulationpar3*16.0)-1.0)/10.0; + break; + }; + +// printf("%.5f %.5f\n",basefuncmodulationpar1,basefuncmodulationpar3); + + for (i=0;ipow(2,(1.0-par)*10)?0.0:1.0)*par2+(1.0-par2);//lp2 + break; + case 7: tmp=pow(par2,0.33); + //tmp=1.0-(1.0-par2)*(1.0-par2); + gain=(i+1>pow(2,(1.0-par)*7)?1.0:0.0)*par2+(1.0-par2);//hp2 + if (Pfilterpar1==0) gain=1.0; + break; + case 8: tmp=pow(par2,0.33); + //tmp=1.0-(1.0-par2)*(1.0-par2); + gain=(fabs(pow(2,(1.0-par)*7)-i)>i/2+1?0.0:1.0)*par2+(1.0-par2);//bp2 + break; + case 9: tmp=pow(par2,0.33); + gain=(fabs(pow(2,(1.0-par)*7)-i)1.0) x=1.0; + tmp=pow(1.0-par2,2.0); + gain=cos(x*PI)*(1.0-tmp)+1.01+tmp;//low shelf + break; + case 13:tmp=(int) (pow(2.0,(1.0-par)*7.2)); + gain=1.0; + if (i==(int) (tmp)) gain=pow(2.0,par2*par2*8.0); + break; + }; + + + oscilFFTfreqs.s[i]*=gain; + oscilFFTfreqs.c[i]*=gain; + REALTYPE tmp=oscilFFTfreqs.s[i]*oscilFFTfreqs.s[i]+ + oscilFFTfreqs.c[i]*oscilFFTfreqs.c[i]; + if (maxsmps2freqs(tmpsmps,basefuncFFTfreqs); + basefuncFFTfreqs.c[0]=0.0; + } else { + for (int i=0;ifreqs2smps(oscilFFTfreqs,tmpsmps); + + //Normalize + REALTYPE max=0.0; + for (i=0;ismps2freqs(tmpsmps,oscilFFTfreqs);//perform FFT +}; + + +/* + * Do the Frequency Modulation of the Oscil + */ +void OscilGen::modulation(){ + int i; + + oldmodulation=Pmodulation; + oldmodulationpar1=Pmodulationpar1; + oldmodulationpar2=Pmodulationpar2; + oldmodulationpar3=Pmodulationpar3; + if (Pmodulation==0) return; + + + REALTYPE modulationpar1=Pmodulationpar1/127.0, + modulationpar2=0.5-Pmodulationpar2/127.0, + modulationpar3=Pmodulationpar3/127.0; + + switch(Pmodulation){ + case 1:modulationpar1=(pow(2,modulationpar1*7.0)-1.0)/100.0; + modulationpar3=floor((pow(2,modulationpar3*5.0)-1.0)); + if (modulationpar3<0.9999) modulationpar3=-1.0; + break; + case 2:modulationpar1=(pow(2,modulationpar1*7.0)-1.0)/100.0; + modulationpar3=1.0+floor((pow(2,modulationpar3*5.0)-1.0)); + break; + case 3:modulationpar1=(pow(2,modulationpar1*9.0)-1.0)/100.0; + modulationpar3=0.01+(pow(2,modulationpar3*16.0)-1.0)/10.0; + break; + }; + + oscilFFTfreqs.c[0]=0.0;//remove the DC + //reduce the amplitude of the freqs near the nyquist + for (i=1;ifreqs2smps(oscilFFTfreqs,tmpsmps); + int extra_points=2; + REALTYPE *in=new REALTYPE[OSCIL_SIZE+extra_points]; + + //Normalize + REALTYPE max=0.0; + for (i=0;ismps2freqs(tmpsmps,oscilFFTfreqs);//perform FFT +}; + + + +/* + * Adjust the spectrum + */ +void OscilGen::spectrumadjust(){ + if (Psatype==0) return; + REALTYPE par=Psapar/127.0; + switch(Psatype){ + case 1: par=1.0-par*2.0; + if (par>=0.0) par=pow(5.0,par); + else par=pow(8.0,par); + break; + case 2: par=pow(10.0,(1.0-par)*3.0)*0.25; + break; + case 3: par=pow(10.0,(1.0-par)*3.0)*0.25; + break; + }; + + + REALTYPE max=0.0; + for (int i=0;i1.0) mag=1.0; + break; + }; + oscilFFTfreqs.c[i]=mag*cos(phase); + oscilFFTfreqs.s[i]=mag*sin(phase); + }; + +}; + +void OscilGen::shiftharmonics(){ + if (Pharmonicshift==0) return; + + REALTYPE hc,hs; + int harmonicshift=-Pharmonicshift; + + if (harmonicshift>0){ + for (int i=OSCIL_SIZE/2-2;i>=0;i--){ + int oldh=i-harmonicshift; + if (oldh<0){ + hc=0.0; + hs=0.0; + } else { + hc=oscilFFTfreqs.c[oldh+1]; + hs=oscilFFTfreqs.s[oldh+1]; + }; + oscilFFTfreqs.c[i+1]=hc; + oscilFFTfreqs.s[i+1]=hs; + }; + } else { + for (int i=0;i=(OSCIL_SIZE/2-1)){ + hc=0.0; + hs=0.0; + } else { + hc=oscilFFTfreqs.c[oldh+1]; + hs=oscilFFTfreqs.s[oldh+1]; + if (fabs(hc)<0.000001) hc=0.0; + if (fabs(hs)<0.000001) hs=0.0; + }; + + oscilFFTfreqs.c[i+1]=hc; + oscilFFTfreqs.s[i+1]=hs; + }; + }; + + oscilFFTfreqs.c[0]=0.0; +}; + +/* + * Prepare the Oscillator + */ +void OscilGen::prepare(){ + int i,j,k; + REALTYPE a,b,c,d,hmagnew; + + if ((oldbasepar!=Pbasefuncpar)||(oldbasefunc!=Pcurrentbasefunc)|| + (oldbasefuncmodulation!=Pbasefuncmodulation)|| + (oldbasefuncmodulationpar1!=Pbasefuncmodulationpar1)|| + (oldbasefuncmodulationpar2!=Pbasefuncmodulationpar2)|| + (oldbasefuncmodulationpar3!=Pbasefuncmodulationpar3)) + changebasefunction(); + + for (i=0;i=OSCIL_SIZE/2) break; + a=basefuncFFTfreqs.c[i]; + b=basefuncFFTfreqs.s[i]; + c=hmag[j]*cos(hphase[j]*k); + d=hmag[j]*sin(hphase[j]*k); + oscilFFTfreqs.c[k]+=a*c-b*d; + oscilFFTfreqs.s[k]+=a*d+b*c; + }; + }; + + }; + + if (Pharmonicshiftfirst!=0) shiftharmonics(); + + + + if (Pfilterbeforews==0){ + waveshape(); + oscilfilter(); + } else { + oscilfilter(); + waveshape(); + }; + + modulation(); + spectrumadjust(); + if (Pharmonicshiftfirst==0) shiftharmonics(); + + oscilFFTfreqs.c[0]=0.0; + + oldhmagtype=Phmagtype; + oldharmonicshift=Pharmonicshift+Pharmonicshiftfirst*256; + + oscilprepared=1; +}; + +void OscilGen::adaptiveharmonic(FFTFREQS f,REALTYPE freq){ + if ((Padaptiveharmonics==0)/*||(freq<1.0)*/) return; + if (freq<1.0) freq=440.0; + + FFTFREQS inf; + newFFTFREQS(&inf,OSCIL_SIZE/2); + for (int i=0;i1.0) { + rap=1.0/rap; + down=true; + }; + + for (int i=0;i=(OSCIL_SIZE/2-2)){ + break; + } else { + if (down){ + f.c[high]+=inf.c[i]*(1.0-low); + f.s[high]+=inf.s[i]*(1.0-low); + f.c[high+1]+=inf.c[i]*low; + f.s[high+1]+=inf.s[i]*low; + } else { + hc=inf.c[high]*(1.0-low)+inf.c[high+1]*low; + hs=inf.s[high]*(1.0-low)+inf.s[high+1]*low; + }; + if (fabs(hc)<0.000001) hc=0.0; + if (fabs(hs)<0.000001) hs=0.0; + }; + + if (!down){ + if (i==0) {//corect the aplitude of the first harmonic + hc*=rap; + hs*=rap; + }; + f.c[i]=hc; + f.s[i]=hs; + }; + }; + + f.c[1]+=f.c[0];f.s[1]+=f.s[0]; + f.c[0]=0.0;f.s[0]=0.0; + deleteFFTFREQS(&inf); +}; + +void OscilGen::adaptiveharmonicpostprocess(REALTYPE *f,int size){ + if (Padaptiveharmonics<=1) return; + REALTYPE *inf=new REALTYPE[size]; + REALTYPE par=Padaptiveharmonicspar*0.01; + par=1.0-pow((1.0-par),1.5); + + for (int i=0;iget(smps,freqHz,0)); +}; + +void OscilGen::newrandseed(unsigned int randseed){ + this->randseed=randseed; +}; + +/* + * Get the oscillator function + */ +short int OscilGen::get(REALTYPE *smps,REALTYPE freqHz,int resonance){ + int i; + int nyquist,outpos; + + if ((oldbasepar!=Pbasefuncpar)||(oldbasefunc!=Pcurrentbasefunc)||(oldhmagtype!=Phmagtype) + ||(oldwaveshaping!=Pwaveshaping)||(oldwaveshapingfunction!=Pwaveshapingfunction)) oscilprepared=0; + if (oldfilterpars!=Pfiltertype*256+Pfilterpar1+Pfilterpar2*65536+Pfilterbeforews*16777216){ + oscilprepared=0; + oldfilterpars=Pfiltertype*256+Pfilterpar1+Pfilterpar2*65536+Pfilterbeforews*16777216; + }; + if (oldsapars!=Psatype*256+Psapar){ + oscilprepared=0; + oldsapars=Psatype*256+Psapar; + }; + + if ((oldbasefuncmodulation!=Pbasefuncmodulation)|| + (oldbasefuncmodulationpar1!=Pbasefuncmodulationpar1)|| + (oldbasefuncmodulationpar2!=Pbasefuncmodulationpar2)|| + (oldbasefuncmodulationpar3!=Pbasefuncmodulationpar3)) + oscilprepared=0; + + if ((oldmodulation!=Pmodulation)|| + (oldmodulationpar1!=Pmodulationpar1)|| + (oldmodulationpar2!=Pmodulationpar2)|| + (oldmodulationpar3!=Pmodulationpar3)) + oscilprepared=0; + + if (oldharmonicshift!=Pharmonicshift+Pharmonicshiftfirst*256) oscilprepared=0; + + if (oscilprepared!=1) prepare(); + + outpos=(int)((RND*2.0-1.0)*(REALTYPE) OSCIL_SIZE*(Prand-64.0)/64.0); + outpos=(outpos+2*OSCIL_SIZE) % OSCIL_SIZE; + + + for (i=0;iOSCIL_SIZE/2) nyquist=OSCIL_SIZE/2; + + + int realnyquist=nyquist; + + if (Padaptiveharmonics!=0) nyquist=OSCIL_SIZE/2; + for (i=1;i64)&&(freqHz>=0.0)&&(!ADvsPAD)){ + REALTYPE rnd,angle,a,b,c,d; + rnd=PI*pow((Prand-64.0)/64.0,2.0); + for (i=1;i0.1)&&(!ADvsPAD)) { + unsigned int realrnd=rand(); + srand(randseed); + REALTYPE power=Pamprandpower/127.0; + REALTYPE normalize=1.0/(1.2-power); + switch (Pamprandtype){ + case 1: power=power*2.0-0.5; + power=pow(15.0,power); + for (i=1;i0.1)&&(resonance!=0)) res->applyres(nyquist-1,outoscilFFTfreqs,freqHz); + + //Full RMS normalize + REALTYPE sum=0; + for (int j=1;j0.1)){//in this case the smps will contain the freqs + for (i=1;ifreqs2smps(outoscilFFTfreqs,smps); + for (i=0;iOSCIL_SIZE/2) n=OSCIL_SIZE/2; + + for (int i=1;ifreqs2smps(basefuncFFTfreqs,smps); + } else getbasefunction(smps);//the sine case +}; + + +void OscilGen::add2XML(XMLwrapper *xml){ + xml->addpar("harmonic_mag_type",Phmagtype); + + xml->addpar("base_function",Pcurrentbasefunc); + xml->addpar("base_function_par",Pbasefuncpar); + xml->addpar("base_function_modulation",Pbasefuncmodulation); + xml->addpar("base_function_modulation_par1",Pbasefuncmodulationpar1); + xml->addpar("base_function_modulation_par2",Pbasefuncmodulationpar2); + xml->addpar("base_function_modulation_par3",Pbasefuncmodulationpar3); + + xml->addpar("modulation",Pmodulation); + xml->addpar("modulation_par1",Pmodulationpar1); + xml->addpar("modulation_par2",Pmodulationpar2); + xml->addpar("modulation_par3",Pmodulationpar3); + + xml->addpar("wave_shaping",Pwaveshaping); + xml->addpar("wave_shaping_function",Pwaveshapingfunction); + + xml->addpar("filter_type",Pfiltertype); + xml->addpar("filter_par1",Pfilterpar1); + xml->addpar("filter_par2",Pfilterpar2); + xml->addpar("filter_before_wave_shaping",Pfilterbeforews); + + xml->addpar("spectrum_adjust_type",Psatype); + xml->addpar("spectrum_adjust_par",Psapar); + + xml->addpar("rand",Prand); + xml->addpar("amp_rand_type",Pamprandtype); + xml->addpar("amp_rand_power",Pamprandpower); + + xml->addpar("harmonic_shift",Pharmonicshift); + xml->addparbool("harmonic_shift_first",Pharmonicshiftfirst); + + xml->addpar("adaptive_harmonics",Padaptiveharmonics); + xml->addpar("adaptive_harmonics_base_frequency",Padaptiveharmonicsbasefreq); + xml->addpar("adaptive_harmonics_power",Padaptiveharmonicspower); + + xml->beginbranch("HARMONICS"); + for (int n=0;nbeginbranch("HARMONIC",n+1); + xml->addpar("mag",Phmag[n]); + xml->addpar("phase",Phphase[n]); + xml->endbranch(); + }; + xml->endbranch(); + + if (Pcurrentbasefunc==127){ + REALTYPE max=0.0; + + for (int i=0;ibeginbranch("BASE_FUNCTION"); + for (int i=1;i0.00001)&&(fabs(xs)>0.00001)){ + xml->beginbranch("BF_HARMONIC",i); + xml->addparreal("cos",xc); + xml->addparreal("sin",xs); + xml->endbranch(); + }; + }; + xml->endbranch(); + }; +}; + + +void OscilGen::getfromXML(XMLwrapper *xml){ + + Phmagtype=xml->getpar127("harmonic_mag_type",Phmagtype); + + Pcurrentbasefunc=xml->getpar127("base_function",Pcurrentbasefunc); + Pbasefuncpar=xml->getpar127("base_function_par",Pbasefuncpar); + + Pbasefuncmodulation=xml->getpar127("base_function_modulation",Pbasefuncmodulation); + Pbasefuncmodulationpar1=xml->getpar127("base_function_modulation_par1",Pbasefuncmodulationpar1); + Pbasefuncmodulationpar2=xml->getpar127("base_function_modulation_par2",Pbasefuncmodulationpar2); + Pbasefuncmodulationpar3=xml->getpar127("base_function_modulation_par3",Pbasefuncmodulationpar3); + + Pmodulation=xml->getpar127("modulation",Pmodulation); + Pmodulationpar1=xml->getpar127("modulation_par1",Pmodulationpar1); + Pmodulationpar2=xml->getpar127("modulation_par2",Pmodulationpar2); + Pmodulationpar3=xml->getpar127("modulation_par3",Pmodulationpar3); + + Pwaveshaping=xml->getpar127("wave_shaping",Pwaveshaping); + Pwaveshapingfunction=xml->getpar127("wave_shaping_function",Pwaveshapingfunction); + + Pfiltertype=xml->getpar127("filter_type",Pfiltertype); + Pfilterpar1=xml->getpar127("filter_par1",Pfilterpar1); + Pfilterpar2=xml->getpar127("filter_par2",Pfilterpar2); + Pfilterbeforews=xml->getpar127("filter_before_wave_shaping",Pfilterbeforews); + + Psatype=xml->getpar127("spectrum_adjust_type",Psatype); + Psapar=xml->getpar127("spectrum_adjust_par",Psapar); + + Prand=xml->getpar127("rand",Prand); + Pamprandtype=xml->getpar127("amp_rand_type",Pamprandtype); + Pamprandpower=xml->getpar127("amp_rand_power",Pamprandpower); + + Pharmonicshift=xml->getpar("harmonic_shift",Pharmonicshift,-64,64); + Pharmonicshiftfirst=xml->getparbool("harmonic_shift_first",Pharmonicshiftfirst); + + Padaptiveharmonics=xml->getpar("adaptive_harmonics",Padaptiveharmonics,0,127); + Padaptiveharmonicsbasefreq=xml->getpar("adaptive_harmonics_base_frequency",Padaptiveharmonicsbasefreq,0,255); + Padaptiveharmonicspower=xml->getpar("adaptive_harmonics_power",Padaptiveharmonicspower,0,200); + + + if (xml->enterbranch("HARMONICS")){ + Phmag[0]=64;Phphase[0]=64; + for (int n=0;nenterbranch("HARMONIC",n+1)==0) continue; + Phmag[n]=xml->getpar127("mag",64); + Phphase[n]=xml->getpar127("phase",64); + xml->exitbranch(); + }; + xml->exitbranch(); + }; + + if (Pcurrentbasefunc!=0) changebasefunction(); + + + if (xml->enterbranch("BASE_FUNCTION")){ + for (int i=1;ienterbranch("BF_HARMONIC",i)){ + basefuncFFTfreqs.c[i]=xml->getparreal("cos",0.0); + basefuncFFTfreqs.s[i]=xml->getparreal("sin",0.0); + xml->exitbranch(); + }; + + + }; + xml->exitbranch(); + + REALTYPE max=0.0; + + basefuncFFTfreqs.c[0]=0.0; + for (int i=0;i