/* * unbenannt.cxx * * Copyright 2012 Unknown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace cv; class XorgGrabber { public: XorgGrabber(const char* win_title); ~XorgGrabber(); void read(Mat& mat); private: xcb_connection_t* conn; xcb_window_t grabbed_win; int grab_width, grab_height; xcb_screen_t* grab_screen; xcb_get_image_reply_t* img; }; XorgGrabber::XorgGrabber(const char* win_title) { conn=xcb_connect(NULL,NULL); bool found_win=false; grab_screen=NULL; img=NULL; /* Find configured screen */ const xcb_setup_t* setup = xcb_get_setup(conn); for (xcb_screen_iterator_t i = xcb_setup_roots_iterator(setup); i.rem > 0; xcb_screen_next (&i)) { xcb_screen_t* scr = i.data; xcb_query_tree_reply_t* reply = xcb_query_tree_reply( conn, xcb_query_tree(conn, scr->root), NULL); if (reply) { int len = xcb_query_tree_children_length(reply); xcb_window_t* children = xcb_query_tree_children(reply); xcb_get_window_attributes_cookie_t* cookies = new xcb_get_window_attributes_cookie_t[len]; for (int i=0; ioverride_redirect && attr->map_state == XCB_MAP_STATE_VIEWABLE) { char* title=(char*)(title_reply+1); cout << title << endl; if (strstr(title, win_title)) { xcb_get_geometry_reply_t* geo; geo = xcb_get_geometry_reply (conn, xcb_get_geometry (conn, children[i]), NULL); if (geo) { grab_width=geo->width; grab_height=geo->height; free(geo); grabbed_win=children[i]; found_win=true; grab_screen=scr; } else { cerr << "geo==NULL!" << endl; } } } free(title_reply); free(attr); } free(reply); delete[] cookies; } else { cout << "xcb_get_setup failed" << endl; } } if (found_win) { xcb_get_image_reply_t* img = xcb_get_image_reply (conn, xcb_get_image (conn, XCB_IMAGE_FORMAT_Z_PIXMAP, grabbed_win, 0, 0, grab_width, grab_height, ~0), NULL); xcb_depth_iterator_t depth_iterator = xcb_screen_allowed_depths_iterator(grab_screen); int ndepths=xcb_screen_allowed_depths_length(grab_screen); for (int i=0; idepth == img->depth) { xcb_visualtype_t* visuals = xcb_depth_visuals(depth_iterator.data); int nvisuals = xcb_depth_visuals_length(depth_iterator.data); for (int j=0;jvisual) { assert(visuals[j]._class==XCB_VISUAL_CLASS_TRUE_COLOR || visuals[j]._class==XCB_VISUAL_CLASS_DIRECT_COLOR); cout << (int)visuals[j]._class << "," << XCB_VISUAL_CLASS_TRUE_COLOR << endl; cout << visuals[j].red_mask << endl; cout << visuals[j].green_mask << endl; cout << visuals[j].blue_mask << endl; break; } } break; } xcb_depth_next(&depth_iterator); } int nformats = xcb_setup_pixmap_formats_length(setup); xcb_format_t* formats = xcb_setup_pixmap_formats(setup); for (int i=0;idepth) { cout << (int)formats[i].bits_per_pixel << endl; cout << (int)formats[i].scanline_pad << endl; break; } } cout << grab_width << "x" << grab_height << endl; free(img); } else { throw string("FATAL: did not find window, exiting."); } } XorgGrabber::~XorgGrabber() { if (img) free(img); xcb_disconnect(conn); } void XorgGrabber::read(Mat& mat) { if (img) free(img); // mat gets invalid when the next read() is called! img = xcb_get_image_reply (conn, xcb_get_image (conn, XCB_IMAGE_FORMAT_Z_PIXMAP, grabbed_win, 0, 0, grab_width, grab_height, ~0), NULL); mat = Mat(grab_height, grab_width, CV_8UC4, xcb_get_image_data(img)); mat.addref(); } #define THROTTLE_CNT_MAX 20 class Joystick { public: Joystick(); ~Joystick(); void steer(float dir, float dead_zone=0.0); void throttle(float t); void press_a(bool); void process(); void reset(); private: float throt; int throttle_cnt; int fd; }; Joystick::Joystick() { fd = open("/dev/uinput", O_WRONLY | O_NONBLOCK); if(fd < 0) { cerr << "open uinput failed. do you have privilegies to access it? (try chown flo:root /dev/uinput)" << endl; exit(EXIT_FAILURE); } int ret; ret=ioctl(fd, UI_SET_EVBIT, EV_KEY); ret=ioctl(fd, UI_SET_EVBIT, EV_SYN); ret=ioctl(fd, UI_SET_KEYBIT , BTN_A); ioctl(fd, UI_SET_EVBIT, EV_ABS); ioctl(fd, UI_SET_ABSBIT, ABS_X); ioctl(fd, UI_SET_ABSBIT, ABS_Y); struct uinput_user_dev meh; memset(&meh,0,sizeof(meh)); strcpy(meh.name, "flotest"); meh.id.bustype=BUS_USB; meh.id.vendor=0xdead; meh.id.product=0xbeef; meh.id.version=1; meh.absmin[ABS_X]=0; meh.absmax[ABS_X]=10000; meh.absmin[ABS_Y]=0; meh.absmax[ABS_Y]=10000; ret=write(fd, &meh, sizeof(meh)); ioctl(fd,UI_DEV_CREATE); reset(); } Joystick::~Joystick() { ioctl(fd, UI_DEV_DESTROY); close(fd); } void Joystick::steer(float dir, float dead_zone) { if (dir<-1.0) dir=-1.0; if (dir>1.0) dir=1.0; if (fabs(dir)1.0) t=1.0; throt=t; } void Joystick::process() { throttle_cnt++; if (throttle_cnt>=THROTTLE_CNT_MAX) throttle_cnt=0; press_a((throttle_cnt < throt*THROTTLE_CNT_MAX)); } void Joystick::press_a(bool a) { struct input_event ev; ev.type=EV_KEY; ev.code=BTN_A; ev.value = a ? 1 : 0; write(fd, &ev, sizeof(ev)); } void Joystick::reset() { struct input_event ev; ev.type=EV_ABS; ev.code=ABS_Y; ev.value=5001; write(fd, &ev, sizeof(ev)); ev.value=5000; write(fd, &ev, sizeof(ev)); cout << "Y zeroed" << endl; steer(0.1); steer(0); cout << "X zeroed" << endl; press_a(true); press_a(false); cout << "A zeroed" << endl; } #define HIST_SMOOTH 7 //#define NO_BRIGHTNESS // will man nicht, nur zu demonstrationszwecken #define ERODE_RADIUS_2D 4 #define IMG_HISTORY 3 Mat circle_mat(int radius) { Mat result(radius*2+1, radius*2+1, CV_8U); for (int x=0; x<=result.cols/2; x++) for (int y=0; y<=result.rows/2; y++) { unsigned char& p1 = result.at(result.cols/2 + x, result.rows/2 + y); unsigned char& p2 = result.at(result.cols/2 - x, result.rows/2 + y); unsigned char& p3 = result.at(result.cols/2 + x, result.rows/2 - y); unsigned char& p4 = result.at(result.cols/2 - x, result.rows/2 - y); if ( x*x + y*y < radius*radius ) p1=p2=p3=p4=255; else p1=p2=p3=p4=0; } return result; } int crosshair_x=0, crosshair_y=0; void mouse_callback(int event, int x, int y, int flags, void* userdata) { if (event==EVENT_LBUTTONDOWN) { crosshair_x=x; crosshair_y=y; } } float flopow(float b, float e) { return (b>=0.0) ? (powf(b,e)) : (-powf(-b,e)); } sem_t thread1_go; sem_t thread1_done; Mat thread1_img; void* thread1_func(void*) { Mat gray; static Mat gray_prev; static std::vector points[2]; std::vector status; // status of tracked features std::vector err; // error in tracking cout << "thread 1 is alive :)" < features; // detected features // detect the features goodFeaturesToTrack(gray, // the image features, // the output detected features 3000, // the maximum number of features 0.2, // quality level 10); // min distance between two features // add the detected features to // the currently tracked features points[0].insert(points[0].end(), features.begin(),features.end()); } // for first image of the sequence if(gray_prev.empty()) gray.copyTo(gray_prev); cv::calcOpticalFlowPyrLK( gray_prev, gray, // 2 consecutive images points[0], // input point positions in first image points[1], // output point positions in the 2nd image status, // tracking success err); // tracking error int k=0; for(int i=0; i < points[1].size(); i++) { // do we keep this point? if (status[i]) { // keep this point in vector points[0][k] = points[0][i]; points[1][k++] = points[1][i]; } } // eliminate unsuccesful points points[0].resize(k); points[1].resize(k); // for all tracked points for(int i= 0; i < points[1].size(); i++ ) { // draw line and circle cv::line(thread1_img, points[0][i], // initial position points[1][i],// new position cv::Scalar(255,255,255)); cv::circle(thread1_img, points[1][i], 2, cv::Scalar(255,255,255),-1); } // 4. extrapolate movement for (int i=0;i(row); for (int col=0; col0) { data[0]=(int)data[0] * 256 / sum; data[1]=(int)data[1] * 256 / sum; data[2]=(int)data[2] * 256 / sum; } else { data[0]=255/3; data[1]=255/3; data[2]=255/3; } data+=img2.step[1]; } } #endif Mat img_diff(img2.rows, img2.cols, CV_8U); int hist[256]; for (int i=0; i<256; i++) hist[i]=0; for (int row = 0; row(row); uchar* data_out=img_diff.ptr(row); for (int col=0; col255) { cout << "error, diff is" << diff << endl; diff=255; } *data_out=diff; hist[diff]++; data+=img2.step[1]; data_out++; } } int hist2[256]; for (int i=0; i<256; i++) { int sum=0; for (int j=-HIST_SMOOTH; j<=HIST_SMOOTH; j++) { if (i+j < 0 || i+j > 255) continue; sum+=hist[i+j]; } hist2[i]=sum; } int cumul=0; int x_begin=0; for (x_begin=0;x_begin<256;x_begin++) { cumul+=hist[x_begin]; if (cumul > img2.rows*img2.cols/100) break; } int hist_max=0; int thres; for (int i=0; i<256; i++) { if (hist2[i]>hist_max) hist_max=hist2[i]; if ((hist2[i] < hist_max/2) && (i>x_begin)) { thres=i; break; } } //thres-=thres/4; Mat img_hist(100,256, CV_8U); for (int row = 0; row(row); for (int col=0; col (img_hist.rows-row)*800) *data=0; data++; } } Mat img_thres(img_diff.rows, img_diff.cols, img_diff.type()); threshold(img_diff, img_thres, thres, 255, THRESH_BINARY_INV); Mat img_eroded(img_thres.rows, img_thres.cols, img_thres.type()); Mat img_tmp(img_thres.rows, img_thres.cols, img_thres.type()); Mat img_thres2(img_thres.rows, img_thres.cols, img_thres.type()); Mat img_stddev(img_thres.rows, img_thres.cols, img_thres.type()); img_stddev=Mat::zeros(img_thres.rows, img_thres.cols, img_thres.type()); erode(img_thres, img_tmp, erode_2d_small); img_tmp.copyTo(img_eroded); dilate(img_tmp, img_thres, erode_2d_small); dilate(img_thres, img_tmp, erode_2d_big); erode(img_tmp, img_thres2, erode_2d_big); img_thres.copyTo(img_history[history_pointer]); Mat historized=img_history[0]/IMG_HISTORY; for (int i=1; i(row); uchar* mask=img_eroded.ptr(row); int mean_value_line_sum=0; int mean_value_line_cnt=0; int mean_value_line; for (int col=0; col(row); data=img2.ptr(row); for (int col=0; col1 && mean_value_line < img2.cols-2) { img_stddev.ptr(row)[mean_value_line-1]=255; img_stddev.ptr(row)[mean_value_line]=255; img_stddev.ptr(row)[mean_value_line+1]=255; } if ((mean_value_line+stddev_line)>1 && (mean_value_line+stddev_line) < img2.cols-2) { img_stddev.ptr(row)[mean_value_line-1+stddev_line]=255; img_stddev.ptr(row)[mean_value_line+stddev_line]=255; img_stddev.ptr(row)[mean_value_line+1+stddev_line]=255; } if ((mean_value_line-stddev_line)>1 && (mean_value_line-stddev_line) < img2.cols-2) { img_stddev.ptr(row)[mean_value_line-1-stddev_line]=255; img_stddev.ptr(row)[mean_value_line-stddev_line]=255; img_stddev.ptr(row)[mean_value_line+1-stddev_line]=255; } } } if (avg_sum>20) { road_0=r0/avg_sum; road_1=r1/avg_sum; road_2=r2/avg_sum; } /* Mat img_perspective(trans_height, trans_width, img_thres.type()); warpPerspective(img_thres, img_perspective, transform, img_perspective.size()); threshold(img_perspective, img_perspective, 127, 255, THRESH_BINARY); Mat img_perspective_temp(img_perspective.rows, img_perspective.cols, img_perspective.type()); Mat img_perspective_temp2(img_perspective.rows, img_perspective.cols, img_perspective.type()); erode(img_perspective, img_perspective_temp, circle_mat(7)); dilate(img_perspective_temp, img_perspective_temp2, circle_mat(7 + 15)); erode(img_perspective_temp2, img_perspective, circle_mat(15)); */ img2.row(crosshair_y)=Scalar(255,0,0); img2.col(crosshair_x)=Scalar(255,0,0); img_diff.row(crosshair_y)=255; img_diff.col(crosshair_x)=255; img_thres2.row(crosshair_y)=128; img_thres2.col(crosshair_x)=128; img_stddev.row(crosshair_y)=255; img_stddev.col(crosshair_x)=255; Mat steer=Mat::zeros(20,1920,CV_8U); steer.col( steer.cols /2 )=128; if (left_sum+right_sum>0) { int x = (steer.cols-2) * left_sum / (left_sum+right_sum) +1; if (x<1) x=1; if (x>=steer.cols-1) x=steer.cols-2; steer.col(x) = 255; steer.col(x-1)=240; steer.col(x+1)=240; joystick.steer(- 4* flopow( (((float)left_sum / (left_sum+right_sum))-0.5 )*2.0 , 1.6) ,0.05); } else joystick.steer(0.0); sem_wait(&thread1_done); // wait for thread1 to finish //imshow("orig", img); imshow("edit", img2); //imshow("perspective", img_perspective); //imshow("diff", img_diff); imshow("hist", img_hist); imshow("thres", img_thres); imshow("thres2", img_thres2); imshow("tracked", thread1_img); //imshow("history", historized); //imshow("stddev", img_stddev); imshow("steer", steer); Mat road_color(100,100, CV_8UC3, Scalar(road_0, road_1, road_2)); imshow("road_color", road_color); img_writer << img_diff; thres_writer << img_thres; thres2_writer << img_thres2; waitKey(1000/50); joystick.process(); } } //try catch(string meh) { cout << "error: "<