#include #include #include #include #include using namespace std; using namespace cv; void set_pixel(Mat m, Point p, Scalar color) { line(m,p,p,color); } int find_intersection_index(int x0, int y0, int x1, int y1, int** contour_map, bool stop_at_endpoint=true) // bresenham aus der dt. wikipedia // returns: the point's index where the intersection happened, or a negative number if no intersection. { int dx = abs(x1-x0), sx = x00) return contour_map[x0][y0]; // found intersection? if (contour_map[x0][y0+1]>0) return contour_map[x0][y0+1]; if (contour_map[x0+1][y0]>0) return contour_map[x0+1][y0]; if (stop_at_endpoint && x0==x1 && y0==y1) break; e2 = 2*err; if (e2 > dy) { err += dy; x0 += sx; } /* e_xy+e_x > 0 */ if (e2 < dx) { err += dx; y0 += sy; } /* e_xy+e_y < 0 */ } return -1; } Mat circle_mat(int radius) { Mat result(radius*2+1, radius*2+1, CV_8U); for (int x=0; x<=result.cols/2; x++) for (int y=0; y<=result.rows/2; y++) { unsigned char& p1 = result.at(result.cols/2 + x, result.rows/2 + y); unsigned char& p2 = result.at(result.cols/2 - x, result.rows/2 + y); unsigned char& p3 = result.at(result.cols/2 + x, result.rows/2 - y); unsigned char& p4 = result.at(result.cols/2 - x, result.rows/2 - y); if ( x*x + y*y < radius*radius ) p1=p2=p3=p4=255; else p1=p2=p3=p4=0; } return result; } void hue2rgb(float hue, int* r, int* g, int* b) { double ff; int i; if (hue >= 360.0) hue = 0.0; hue /= 60.0; i = (int)hue; ff = hue - i; int x=ff*255; switch(i) { case 0: *r = 255; *g = x; *b = 0; break; case 1: *r = 255-x; *g = 255; *b = 0; break; case 2: *r = 0; *g = 255; *b = x; break; case 3: *r = 0; *g = 255-x; *b = 255; break; case 4: *r = x; *g = 0; *b = 255; break; case 5: default: *r = 255; *g = 0; *b = 255-x; break; } } double linear(double x, double x1, double y1, double x2, double y2, bool clip=false, double clipmin=INFINITY, double clipmax=INFINITY) { if (clipmin==INFINITY) clipmin=y1; if (clipmax==INFINITY) clipmax=y2; if (clipmin>clipmax) { int tmp=clipmin; clipmin=clipmax; clipmax=tmp; } double result = (y2-y1)*(x-x1)/(x2-x1)+y1; if (clip) { if (result>clipmax) return clipmax; else if (result(row); for (int col=0; col(row); for (int col=0; col200) tmp=200; if (*data==largest_region) tmp=255; *data=tmp; } data++; } } } double only_retain_largest_region(Mat img, int* size) // img is a binary image // in *size, if non-NULL, the size of the largest area is stored. // returns: ratio between the second-largest and largest region // 0.0 means "that's the only region", 1.0 means "both had the same size!" // can be interpreted as 1.0 - "confidence". { int n_regions = annotate_regions(img); // calculate the area of each region int* area_cnt = new int[n_regions]; for (int i=0;i(row); for (int col=0; colmaxa) { maxa=area_cnt[i]; maxi2=maxi; maxi=i; } } // lösche alle bis auf die größte fläche for (int row = 0; row(row); for (int col=0; col& prepare_and_get_contour(int xlen, int ylen, vector< vector >& contours, const vector& hierarchy, int* low_y, int* low_idx, int* high_y, int* first_nonbottom_idx) { assert(low_y!=NULL); assert(low_idx!=NULL); assert(high_y!=NULL); assert(first_nonbottom_idx!=NULL); // find index of our road contour int road_contour_idx=-1; for (road_contour_idx=0; road_contour_idx=0 && road_contour_idx0); vector& contour = contours[road_contour_idx]; // just a shorthand // our road is now in contour. // find highest and lowest contour point. (where "low" means high y-coordinate) *low_y=0; *low_idx=0; *high_y=ylen; for (int j=0;j *low_y) { *low_y=contour[j].y; *low_idx=j; } if (contour[j].y < *high_y) { *high_y=contour[j].y; } } // make the contour go "from bottom upwards and then downwards back to bottom". std::rotate(contour.begin(),contour.begin()+*low_idx,contour.end()); *first_nonbottom_idx = 0; for (;*first_nonbottom_idx& contour, int** contour_map, int xlen, int ylen) { for (int j=0;j& contour, int first_nonbottom_idx, int ylen, int smoothen_middle, int smoothen_bottom) { // calculate directional angle for each nonbottom contour point double* angles = new double[contour.size()]; for (int j=first_nonbottom_idx; j= contour.size()) j1-=contour.size(); int j2=(j-smoothen); while (j2 < 0) j2+=contour.size(); // calculate angle, adjust it to be within [0, 360) angles[j] = atan2(contour[j1].y - contour[j2].y, contour[j1].x - contour[j2].x) * 180/3.141592654; if (angles[j]<0) angles[j]+=360; } return angles; } double* calc_angle_deriv(double* angles, int first_nonbottom_idx, int size, int ang_smooth) { // calculate derivative of angle for each nonbottom contour point double* angle_derivative = new double[size]; for (int j=first_nonbottom_idx+ang_smooth; j=360) ang_diff-=360; if (ang_diff>=180) ang_diff=360-ang_diff; angle_derivative[j] = (double)ang_diff / ang_smooth; } // poorly extrapolate the ang_smooth margins for (int j=first_nonbottom_idx; j& contour, double* angle_derivative, int high_y, int first_nonbottom_idx, Mat& drawing, int* bestquality_j_out, int* bestquality_width_out, int* bestquality_out) { assert(bestquality_out!=NULL); assert(bestquality_j_out!=NULL); assert(bestquality_width_out!=NULL); double lastmax=-999999; double bestquality=0.0; double bestquality_max=0.0; int bestquality_j=-1; int bestquality_width=-1; #define MAX_HYST 0.8 // search for "maximum regions"; i.e. intervals [a,b] with // ang_deriv[i] >= MAX_HYST * max_deriv \forall i \in [a,b] and // ang_deriv[a-1,2,3], ang_deriv[b+1,2,3] < MAX_HYST * max_deriv // where max_deriv = max_{i \in [a,b]} ang_deriv[i]; for (int j=3; j lastmax) lastmax=angle_derivative[j]; if (angle_derivative[j] < MAX_HYST*lastmax && // found the end of the max. region angle_derivative[j+1] < MAX_HYST*lastmax && angle_derivative[j+2] < MAX_HYST*lastmax) { if (lastmax > 5) // threshold the maximum. { // search backward for the begin of that maximum region int j0; for (j0=j-1; j0>=0; j0--) if (angle_derivative[j0] < MAX_HYST*lastmax && angle_derivative[j0-1] < MAX_HYST*lastmax && angle_derivative[j0-2] < MAX_HYST*lastmax) break; // maximum region is [j0; j] double median_of_max_region = (double)angle_derivative[(j+j0)/2]; // calculate quality of that maximum. quality is high, if // 1) the maximum has a high value AND // 2) the corresponding point's y-coordinates are near the top image border AND // 3) the corresponding point's x-coordinates are near the middle of the image, if in doubt int middle_x = drawing.cols/2; int distance_from_middle_x = abs(drawing.cols/2 - contour[j].x); double quality = median_of_max_region * linear( contour[j].y, high_y, 1.0, high_y+ (drawing.rows-high_y)/10, 0.0, true) // excessively punish points far away from the top border * linear( distance_from_middle_x, 0.8*middle_x, 1.0, middle_x, 0.6, true); // moderately punish point far away from the x-middle. // keep track of the best point if (quality>bestquality) { bestquality=quality; bestquality_max=lastmax; bestquality_j=(j+j0)/2; bestquality_width=j-j0; } // irrelevant drawing stuff int x=drawing.cols-drawing.cols*((j+j0)/2-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx); line(drawing, Point(x,25+40-3*quality), Point(x, 25+40), Scalar(0,255,0)); circle(drawing, contour[(j+j0)/2], 1, Scalar(128,0,0)); } lastmax=-999999; // reset lastmax, so the search can go on } } // now bestquality_j holds the index of the point with the best quality. *bestquality_out = bestquality; *bestquality_j_out = bestquality_j; *bestquality_width_out = bestquality_width; } int find_ideal_line(int xlen, int ylen, vector& contour, int** contour_map, int bestquality_j, Mat drawing) // TODO: this code is crappy, slow, and uses brute force. did i mention it's crappy and slow? { int intersection = find_intersection_index(xlen/2, ylen-ylen/5, contour[bestquality_j].x, contour[bestquality_j].y, contour_map); int steering_point=-1; if (intersection<0) { cout << "THIS SHOULD NEVER HAPPEN" << endl; return -1; } else { circle(drawing, contour[intersection], 2, Scalar(0,0,0)); circle(drawing, contour[intersection], 1, Scalar(0,0,0)); int xx=contour[bestquality_j].x; int lastheight=-1; if (intersection < bestquality_j) // too far on the right == intersecting the right border { // rotate the line to the left till it gets better for (; xx>=0; xx--) { int intersection2 = find_intersection_index(drawing.cols/2, drawing.rows-drawing.rows/5, xx, contour[bestquality_j].y, contour_map); if (intersection2<0) // won't happen anyway break; if (intersection2>=bestquality_j) // now we intersect the opposite (=left) border { if (contour[intersection2].y>=lastheight) // we intersect at a lower = worse point? xx++; // then undo last step break; } lastheight=contour[intersection2].y; } } else if (intersection > bestquality_j) // too far on the left == intersecting the left border { // rotate the line to the right till it gets better for (; xx=lastheight) // we intersect at a lower = worse point? xx--; // then undo last step break; } lastheight=contour[intersection2].y; } } // else // we directly met the bestquality point, i.e. where we wanted to go to. // do nothing return find_intersection_index(drawing.cols/2, drawing.rows-drawing.rows/5, xx, contour[bestquality_j].y, contour_map, false); } } #define SMOOTHEN_BOTTOM 25 #define SMOOTHEN_MIDDLE 10 #define ANG_SMOOTH 9 // return the index of the point to steer to. int find_steering_point(Mat orig_img, int** contour_map, Mat& drawing) // orig_img is a binary image { Mat img; orig_img.copyTo(img); // this is needed because findContours destroys its input. vector > contours; vector hierarchy; findContours(img, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE, Point(0, 0)); int low_y, low_idx, high_y, first_nonbottom_idx; vector& contour = prepare_and_get_contour(img.cols, img.rows, contours, hierarchy, &low_y, &low_idx, &high_y, &first_nonbottom_idx); init_contour_map(contour, contour_map, img.cols, img.rows); // Draw contours drawing = Mat::zeros( img.size(), CV_8UC3 ); drawContours(drawing, contours, -1, Scalar(255,0,0), 1, 8, hierarchy); double* angles = calc_contour_angles(contour, first_nonbottom_idx, img.rows, SMOOTHEN_MIDDLE, SMOOTHEN_BOTTOM); double* angle_derivative = calc_angle_deriv(angles, first_nonbottom_idx, contour.size(), ANG_SMOOTH); // irrelevant drawing stuff for (int j=first_nonbottom_idx; j=0) // should be always true line(drawing, contour[steering_point], Point(drawing.cols/2, drawing.rows-drawing.rows/5), Scalar(0,255,255)); delete [] angle_derivative; delete [] angles; return steering_point; } #define AREA_HISTORY 10 int alertcnt=21; int main(int argc, char* argv[]) { if (argc!=2) {printf("usage: %s videofile\n",argv[0]); exit(1);} VideoCapture capture(argv[1]); if (!capture.isOpened()) { cout << "couldn't open file" << endl; exit(1); } Mat erode_kernel=circle_mat(10); Mat frame; capture >> frame; Mat thres(frame.rows, frame.cols, CV_8UC1); Mat tmp(frame.rows, frame.cols, CV_8UC1); int** contour_map; contour_map=new int*[frame.cols]; for (int i=0;i> frame; if (frameno<190) { frameno++; continue; } cvtColor(frame, tmp, CV_RGB2GRAY); threshold(tmp, thres, 132, 255, THRESH_BINARY); dilate(thres,tmp,Mat()); erode(tmp,thres,Mat()); erode(thres,tmp,Mat()); dilate(tmp,thres,Mat()); int area_abs; double area_ratio = only_retain_largest_region(thres, &area_abs); dilate(thres, tmp, erode_kernel); erode(tmp, thres, erode_kernel); Mat drawing; find_steering_point(thres, contour_map, drawing); area_history_sum-=area_history[area_history_ptr]; area_history[area_history_ptr]=area_abs; area_history_sum+=area_abs; area_history_ptr=(area_history_ptr+1)%AREA_HISTORY; int prev_area=area_history_sum/AREA_HISTORY; cout << "\r\e[2A area = "<0.1) { cout << "\nALERT: possibly split road!\n\n\n" << flush; alertcnt=0; } if (abs(100*area_abs/prev_area -100) >=10) { cout << "\nALERT: too fast road area change!\n\n\n" << flush; alertcnt=0; } alertcnt++; if (alertcnt == 20) cout << "\n\n\n\n\n\n------------------------\n\n\n"; cout << "frame #"<