From b48e848140b353752e24583d299ed1858a533f21 Mon Sep 17 00:00:00 2001 From: Florian Jung Date: Sat, 1 Dec 2012 10:58:25 +0100 Subject: =?UTF-8?q?noch=20sch=C3=B6ner?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Makefile | 4 +- detect_road_borders.cpp | 558 ++++++++++++++++++++++++++---------------------- 2 files changed, 299 insertions(+), 263 deletions(-) diff --git a/Makefile b/Makefile index 58da5bf..210ac2a 100644 --- a/Makefile +++ b/Makefile @@ -1,11 +1,11 @@ all: detect_road_borders mariokart01 detect_road_borders: detect_road_borders.cpp - g++ `pkg-config --libs --cflags opencv` $< -o $@ + g++ `pkg-config --libs --cflags opencv` -g $< -o $@ test_detect: detect_road_borders ./detect_road_borders test.mpg mariokart01: mariokart01.cpp - g++ `pkg-config --libs --cflags opencv` -lxcb -lpthread $< -o $@ + g++ `pkg-config --libs --cflags opencv` -lxcb -lpthread -g $< -o $@ diff --git a/detect_road_borders.cpp b/detect_road_borders.cpp index b8b1dba..4ee2fc8 100644 --- a/detect_road_borders.cpp +++ b/detect_road_borders.cpp @@ -7,6 +7,10 @@ using namespace std; using namespace cv; +void set_pixel(Mat m, Point p, Scalar color) +{ + line(m,p,p,color); +} int find_intersection_index(int x0, int y0, int x1, int y1, int** contour_map, bool stop_at_endpoint=true) // bresenham aus der dt. wikipedia // returns: the point's index where the intersection happened, or a negative number if no intersection. @@ -238,308 +242,340 @@ double only_retain_largest_region(Mat img, int* size) else return (double)area_cnt[maxi2]/(double)area_cnt[maxi]; } -#define SMOOTHEN_BOTTOM 25 -#define SMOOTHEN_MIDDLE 10 -#define ANG_SMOOTH 9 -void find_steering_point(Mat orig_img, int** contour_map, Mat& drawing) // orig_img is a binary image + +vector& prepare_and_get_contour(int xlen, int ylen, vector< vector >& contours, const vector& hierarchy, + int* low_y, int* low_idx, int* high_y, int* first_nonbottom_idx) { - Mat img; - orig_img.copyTo(img); // this is needed because findContours destroys its input. + assert(low_y!=NULL); + assert(low_idx!=NULL); + assert(high_y!=NULL); + assert(first_nonbottom_idx!=NULL); - vector > contours; - vector hierarchy; + + // find index of our road contour + int road_contour_idx=-1; + for (road_contour_idx=0; road_contour_idx=0 && road_contour_idx0); + vector& contour = contours[road_contour_idx]; // just a shorthand + + // our road is now in contour. - for( int i = 0; i< contours.size(); i++ ) + + // find highest and lowest contour point. (where "low" means high y-coordinate) + *low_y=0; *low_idx=0; + *high_y=ylen; + + for (int j=0;j *low_y) + { + *low_y=contour[j].y; + *low_idx=j; + } + if (contour[j].y < *high_y) + { + *high_y=contour[j].y; + } + } + + // make the contour go "from bottom upwards and then downwards back to bottom". + std::rotate(contour.begin(),contour.begin()+*low_idx,contour.end()); - if (hierarchy[i][3]<0) // no parent - color=Scalar(255,255,255); - else // this is a sub-contour which is actually irrelevant for our needs - color=Scalar(255,0,0); + *first_nonbottom_idx = 0; + for (;*first_nonbottom_idx& contour, int** contour_map, int xlen, int ylen) +{ + for (int j=0;j& contour, int first_nonbottom_idx, int ylen, int smoothen_middle, int smoothen_bottom) +{ + // calculate directional angle for each nonbottom contour point + double* angles = new double[contour.size()]; + for (int j=first_nonbottom_idx; j& contour = contours[road_contour_idx]; // just a shorthand - - if (!contour.size()>0) continue; // should never happen. - - - // find highest and lowest contour point. (where "low" means high y-coordinate) - int low_y=0, low_idx=-1; - int high_y=drawing.rows; - - for (int j=0;j low_y) - { - low_y=contour[j].y; - low_idx=j; - } - if (contour[j].y < high_y) - high_y=contour[j].y; - } - - assert(low_idx!=0); - - - - + // calculate left and right point for the difference quotient, possibly wrap. + int j1=(j+smoothen); while (j1 >= contour.size()) j1-=contour.size(); + int j2=(j-smoothen); while (j2 < 0) j2+=contour.size(); - // make the contour go "from bottom upwards and then downwards back to bottom". - std::rotate(contour.begin(),contour.begin()+low_idx,contour.end()); - // create contour map - for (int j=0;j=360) ang_diff-=360; + if (ang_diff>=180) ang_diff=360-ang_diff; - int first_nonbottom_idx = 0; - for (;first_nonbottom_idx& contour, double* angle_derivative, int high_y, int first_nonbottom_idx, Mat& drawing, + int* bestquality_j_out, int* bestquality_width_out, int* bestquality_out) +{ + assert(bestquality_out!=NULL); + assert(bestquality_j_out!=NULL); + assert(bestquality_width_out!=NULL); + + double lastmax=-999999; + double bestquality=0.0; + double bestquality_max=0.0; + int bestquality_j=-1; + int bestquality_width=-1; + + #define MAX_HYST 0.8 + // search for "maximum regions"; i.e. intervals [a,b] with + // ang_deriv[i] >= MAX_HYST * max_deriv \forall i \in [a,b] and + // ang_deriv[a-1,2,3], ang_deriv[b+1,2,3] < MAX_HYST * max_deriv + // where max_deriv = max_{i \in [a,b]} ang_deriv[i]; + for (int j=3; j lastmax) lastmax=angle_derivative[j]; - - // calculate directional angle for each nonbottom contour point - double* angles = new double[contour.size()]; - for (int j=first_nonbottom_idx; j 5) // threshold the maximum. { - int smoothen=linear(contour[j].y, img.rows/2 ,SMOOTHEN_MIDDLE, img.rows,SMOOTHEN_BOTTOM, true); - - - // calculate left and right point for the difference quotient, possibly wrap. - int j1=(j+smoothen); while (j1 >= contour.size()) j1-=contour.size(); - int j2=(j-smoothen); while (j2 < 0) j2+=contour.size(); - - - // calculate angle, adjust it to be within [0, 360) - angles[j] = atan2(contour[j1].y - contour[j2].y, contour[j1].x - contour[j2].x) * 180/3.141592654; - if (angles[j]<0) angles[j]+=360; + // search backward for the begin of that maximum region + int j0; + for (j0=j-1; j0>=0; j0--) + if (angle_derivative[j0] < MAX_HYST*lastmax && + angle_derivative[j0-1] < MAX_HYST*lastmax && + angle_derivative[j0-2] < MAX_HYST*lastmax) + break; + // maximum region is [j0; j] + + double median_of_max_region = (double)angle_derivative[(j+j0)/2]; - // irrelevant drawing stuff - int r,g,b; - hue2rgb(angles[j], &r, &g, &b); - circle(drawing, contour[j], 2, Scalar(b,g,r)); - int x=drawing.cols-drawing.cols*(j-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx); - line(drawing,Point(x,0), Point(x,10), Scalar(b,g,r)); - } - - // calculate derivative of angle for each nonbottom contour point - double* angle_derivative = new double[contour.size()]; - for (int j=first_nonbottom_idx+ANG_SMOOTH; j=360) ang_diff-=360; - if (ang_diff>=180) ang_diff=360-ang_diff; - - angle_derivative[j] = (double)ang_diff / ANG_SMOOTH; + // calculate quality of that maximum. quality is high, if + // 1) the maximum has a high value AND + // 2) the corresponding point's y-coordinates are near the top image border AND + // 3) the corresponding point's x-coordinates are near the middle of the image, if in doubt + int middle_x = drawing.cols/2; + int distance_from_middle_x = abs(drawing.cols/2 - contour[j].x); + double quality = median_of_max_region + * linear( contour[j].y, high_y, 1.0, high_y+ (drawing.rows-high_y)/10, 0.0, true) // excessively punish points far away from the top border + * linear( distance_from_middle_x, 0.8*middle_x, 1.0, middle_x, 0.6, true); // moderately punish point far away from the x-middle. + // keep track of the best point + if (quality>bestquality) + { + bestquality=quality; + bestquality_max=lastmax; + bestquality_j=(j+j0)/2; + bestquality_width=j-j0; + } - // irrelevant drawing stuff - int x=drawing.cols-drawing.cols*(j-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx); - int c=abs(20* ang_diff/ANG_SMOOTH); - Scalar col=(c<256) ? Scalar(255-c,255-c,255) : Scalar(255,0,255); - line(drawing, Point(x,12), Point(x,22), col); - - int y=25+40-2*ang_diff/ANG_SMOOTH; - line(drawing, Point(x,y), Point(x,y), Scalar(255,255,255)); - circle(drawing, contour[j], 2, col); + int x=drawing.cols-drawing.cols*((j+j0)/2-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx); + line(drawing, Point(x,25+40-3*quality), Point(x, 25+40), Scalar(0,255,0)); + circle(drawing, contour[(j+j0)/2], 1, Scalar(128,0,0)); } - // poorly extrapolate the ANG_SMOOTH margins - for (int j=first_nonbottom_idx; j= MAX_HYST * max_deriv \forall i \in [a,b] and - // ang_deriv[a-1,2,3], ang_deriv[b+1,2,3] < MAX_HYST * max_deriv - // where max_deriv = max_{i \in [a,b]} ang_deriv[i]; - for (int j=3; j& contour, int** contour_map, int bestquality_j, Mat drawing) +// TODO: this code is crappy, slow, and uses brute force. did i mention it's crappy and slow? +{ + int intersection = find_intersection_index(xlen/2, ylen-ylen/5, + contour[bestquality_j].x, contour[bestquality_j].y, contour_map); + int steering_point=-1; + + if (intersection<0) + { + cout << "THIS SHOULD NEVER HAPPEN" << endl; + return -1; + } + else + { + circle(drawing, contour[intersection], 2, Scalar(0,0,0)); + circle(drawing, contour[intersection], 1, Scalar(0,0,0)); + + int xx=contour[bestquality_j].x; + int lastheight=-1; + if (intersection < bestquality_j) // too far on the right == intersecting the right border + { + // rotate the line to the left till it gets better + for (; xx>=0; xx--) { - // search forward for a maximum, and the end of a maximum region. - if (angle_derivative[j] > lastmax) lastmax=angle_derivative[j]; + int intersection2 = find_intersection_index(drawing.cols/2, drawing.rows-drawing.rows/5, xx, contour[bestquality_j].y, contour_map); + if (intersection2<0) // won't happen anyway + break; - if (angle_derivative[j] < MAX_HYST*lastmax && // found the end of the max. region - angle_derivative[j+1] < MAX_HYST*lastmax && - angle_derivative[j+2] < MAX_HYST*lastmax) + if (intersection2>=bestquality_j) // now we intersect the opposite (=left) border { - if (lastmax > 5) // threshold the maximum. - { - // search backward for the begin of that maximum region - int j0; - for (j0=j-1; j0>=0; j0--) - if (angle_derivative[j0] < MAX_HYST*lastmax && - angle_derivative[j0-1] < MAX_HYST*lastmax && - angle_derivative[j0-2] < MAX_HYST*lastmax) - break; - - // maximum region is [j0; j] - - double median_of_max_region = (double)angle_derivative[(j+j0)/2]; + if (contour[intersection2].y>=lastheight) // we intersect at a lower = worse point? + xx++; // then undo last step - // calculate quality of that maximum. quality is high, if - // 1) the maximum has a high value AND - // 2) the corresponding point's y-coordinates are near the top image border AND - // 3) the corresponding point's x-coordinates are near the middle of the image, if in doubt - int middle_x = drawing.cols/2; - int distance_from_middle_x = abs(drawing.cols/2 - contour[j].x); - double quality = median_of_max_region - * linear( contour[j].y, high_y, 1.0, high_y+ (drawing.rows-high_y)/10, 0.0, true) // excessively punish points far away from the top border - * linear( distance_from_middle_x, 0.8*middle_x, 1.0, middle_x, 0.6, true); // moderately punish point far away from the x-middle. - - // keep track of the best point - if (quality>bestquality) - { - bestquality=quality; - bestquality_max=lastmax; - bestquality_j=(j+j0)/2; - bestquality_width=j-j0; - } - - - // irrelevant drawing stuff - int x=drawing.cols-drawing.cols*((j+j0)/2-first_nonbottom_idx)/(contour.size()-first_nonbottom_idx); - line(drawing, Point(x,25+40-3*quality), Point(x, 25+40), Scalar(0,255,0)); - circle(drawing, contour[(j+j0)/2], 1, Scalar(128,0,0)); - } - - lastmax=-999999; // reset lastmax, so the search can go on + break; } + lastheight=contour[intersection2].y; } - - // now bestquality_j holds the index of the point with the best quality. - - circle(drawing, contour[bestquality_j], 3, Scalar(255,255,0)); - circle(drawing, contour[bestquality_j], 2, Scalar(255,255,0)); - circle(drawing, contour[bestquality_j], 1, Scalar(255,255,0)); - circle(drawing, contour[bestquality_j], 0, Scalar(255,255,0)); - - int antisaturation = 200-(200* bestquality/10.0); - if (antisaturation<0) antisaturation=0; - for (int j=0;j bestquality_j) // too far on the left == intersecting the left border + { + // rotate the line to the right till it gets better + for (; xx=0; xx--) - { - int intersection2 = find_intersection_index(drawing.cols/2, drawing.rows-drawing.rows/5, xx, contour[bestquality_j].y, contour_map); - if (intersection2<0) // won't happen anyway - break; - - if (intersection2>=bestquality_j) // now we intersect the opposite (=left) border - { - if (contour[intersection2].y>=lastheight) // we intersect at a lower = worse point? - xx++; // then undo last step - - break; - } - lastheight=contour[intersection2].y; - } - } - else if (intersection > bestquality_j) // too far on the left == intersecting the left border + int intersection2 = find_intersection_index(drawing.cols/2, drawing.rows-drawing.rows/5, xx, contour[bestquality_j].y, contour_map); + if (intersection2<0)// won't happen anyway + break; + + if (intersection2<=bestquality_j) // now we intersect the opposite (=right) border { - // rotate the line to the right till it gets better - for (; xx=lastheight) // we intersect at a lower = worse point? + xx--; // then undo last step - if (intersection2<=bestquality_j) // now we intersect the opposite (=right) border - { - if (contour[intersection2].y>=lastheight) // we intersect at a lower = worse point? - xx--; // then undo last step - - break; - } - lastheight=contour[intersection2].y; - } + break; } - // else // we directly met the bestquality point, i.e. where we wanted to go to. - // do nothing - - // drawing stuff: - // now find the intrsection point of our line with the contour (just for drawing it nicely) - int steering_point = find_intersection_index(drawing.cols/2, drawing.rows-drawing.rows/5, xx, contour[bestquality_j].y, contour_map, false); - if (steering_point>=0) // should be always true - line(drawing, contour[steering_point], Point(drawing.cols/2, drawing.rows-drawing.rows/5), Scalar(0,255,255)); + lastheight=contour[intersection2].y; } - - cout << "bestquality_width="<