import time import math import random from collections import defaultdict import pickle from functools import reduce import mechanics import geometry #import numpy def fit_gaussian(l): mean = sum(l) / len(l) stddev = math.sqrt(sum(map(lambda v : (v-mean)**2, l)) / len(l)) return mean, stddev def flatten(l): return reduce(lambda a,b:a+b, l) def quantile(values, q): if isinstance(values, dict): return quantile(flatten(map(lambda x : [x[0]]*x[1], sorted(values.items(),key=lambda x:x[0]))), q) else: try: return sorted(values)[ int(len(values)*q) ] except: return 0 def find_smallest_q_confidence_area(values, q): try: mid = min(values, key = lambda value : quantile(list(map(lambda x : abs(x-value), values)), q)) deviation = quantile(list(map(lambda x : abs(x-mid), values)),q) #print(list(map(lambda x : abs(x-mid), values))) return mid,deviation except: return 0,0 def avg(values): if not isinstance(values, dict): return sum(values)/len(values) else: return int(sum(map( lambda x : x[0]*x[1], values.items() )) / sum(map(lambda x : x[1], values.items()))) def stddev(values): a=avg(values) return avg(list(map(lambda v : (v-a)**2, values))) def normalize(values): a=avg(values) return [x/a for x in values] class StatData(): pass def return_empty_list(): return [] def return_defaultdict_with_empty_list(): return defaultdict(return_empty_list) def return_zero(): return 0 def return_defaultdict_with_zeros(): return defaultdict(return_zero) class Stats: def __init__(self,c,data=None): self.c = c self.countdown = 27*20 if data == None: self.data = StatData() self.data.version = 3 self.data.min_mass = 0 self.data.max_mass = 0 self.data.current_mass = 0 self.data.mass_history = [] self.data.pos_history = [] self.data.cell_aggressivity = {} self.data.cell_split_frequency = {} self.data.cell_defensiveness = {} self.data.size_vs_speed = defaultdict(return_defaultdict_with_zeros) self.data.size_vs_visible_window = defaultdict(return_defaultdict_with_empty_list) self.data.mass_vs_visible_window = defaultdict(return_defaultdict_with_empty_list) self.data.eject_distlogs = {"virus" : [], "split cell" : [], "ejected mass" : []} self.data.eject_deviations = {"virus" : [], "split cell" : [], "ejected mass" : []} else: self.data = data def log_mass(self, mass): self.data.mass_history.append((time.time(), mass)) self.data.current_mass = mass if mass > self.data.max_mass: self.data.max_mass = mass if mass < self.data.min_mass: self.data.min_mass = mass def log_pos(self, pos): self.data.pos_history.append((time.time(), (pos[0], pos[1]))) def update_cell_aggressivity(self, cell, value): self.data.cell_aggressivity[cell] = value def update_cell_split_frequency(self, cell, value): self.data.cell_split_frequency[cell] = value def update_cell_defensiveness(self, cell, value): self.data.cell_defensiveness[cell] = value def get_last_steps(self, list, steps = 10): return list[-steps:] def process_frame(self): self.countdown -= 1 if (self.countdown <= 0): quick_followup = (random.random() < 0.1) if quick_followup: self.countdown = 7 else: self.countdown = int(27* (random.random() * 15)) what_to_do = random.random() if what_to_do < 0.2: self.c.send_split() else: self.c.send_shoot() self.log_pos(self.c.player.center) self.log_mass(self.c.player.total_mass) cells = self.c.world.cells.values() own_cells = list(self.c.player.own_cells) own_total_size = sum( map(lambda cell : cell.size, own_cells) ) own_total_mass = sum( map(lambda cell : cell.mass, own_cells) ) n_own_cells = len(own_cells) n = 3 for cell in filter(lambda cell : not cell.is_food and not cell.is_virus and not cell.is_ejected_mass, cells): if hasattr(cell,'poslog') and len(cell.poslog) > n+1: cellspeed = 0 for i in range(1,n+1): cellspeed += (cell.poslog[-i] - cell.poslog[-i-1]).len() / n cellspeed = int(cellspeed*10)/10 self.data.size_vs_speed[cell.size][cellspeed] += 1 visible_width = max( map(lambda cell : cell.pos.x - cell.size, cells) ) - min( map(lambda cell : cell.pos.x + cell.size, cells) ) visible_height = max( map(lambda cell : cell.pos.y - cell.size, cells) ) - min( map(lambda cell : cell.pos.y + cell.size, cells) ) self.data.size_vs_visible_window[n_own_cells][own_total_size].append((visible_width,visible_height)) self.data.mass_vs_visible_window[n_own_cells][own_total_mass].append((visible_width,visible_height)) # find ejected mass, split cells or viruses that have come to rest for cell in cells: if hasattr(cell,"parent") and cell.parent != None and not cell.calmed_down: # we're only interested in cells with a parent set, because # this also implies that we have tracked them since their # creation. # also, we're only interested in cells that are still flying # as a result of being ejected/split. if not cell.is_food and not cell.is_ejected_mass and not cell.is_virus: expected_speed = mechanics.speed(cell.size) celltype = "split cell" elif cell.is_virus: expected_speed = 1 celltype = "virus" elif cell.is_ejected_mass: expected_speed = 1 celltype = "ejected mass" if cell.movement.len() < expected_speed * 1.1: print(celltype+" has come to rest, nframes="+str(len(cell.poslog))) cell.calmed_down = True # TODO: speed log distance = (cell.spawnpoint - cell.pos).len() distance_from_parent = (cell.parentpos_when_spawned - cell.pos).len() self.data.eject_distlogs[celltype] += [(distance, distance_from_parent, cell.parentsize_when_spawned)] print(" flown distance = "+str(distance)) if len(cell.poslog) == 5: # calculate movement direction from the first 5 samples # first check whether they're on a straight line if geometry.is_colinear(cell.poslog) and cell.shoot_vec != None: print(celltype+" direction available!") fly_direction = cell.poslog[-1] - cell.poslog[0] fly_angle = math.atan2(fly_direction.y, fly_direction.x) shoot_angle = math.atan2(cell.shoot_vec.y, cell.shoot_vec.x) deviation = (fly_angle - shoot_angle) % (2*math.pi) if deviation > math.pi: deviation -= 2*math.pi print(" deviation = "+str(deviation*180/math.pi)) self.data.eject_deviations[celltype] += [deviation] else: print(celltype+" did NOT fly in a straight line, ignoring...") def save(self,filename): pickle.dump(self.data, open(filename,"wb")) def load(filename): return Stats(None, pickle.load(open(filename,"rb"))) def merge(self, filename): data2 = pickle.load(open(filename,"rb")) self.data.min_mass = min(self.data.min_mass, data2.min_mass) self.data.max_mass = max(self.data.max_mass, data2.max_mass) for i in data2.size_vs_visible_window: for j in data2.size_vs_visible_window[i]: self.data.size_vs_visible_window[i][j] += data2.size_vs_visible_window[i][j] for i in data2.mass_vs_visible_window: for j in data2.mass_vs_visible_window[i]: self.data.mass_vs_visible_window[i][j] += data2.mass_vs_visible_window[i][j] for i in data2.size_vs_speed: for j in data2.size_vs_speed[i]: self.data.size_vs_speed[i][j] += data2.size_vs_speed[i][j] for i in data2.eject_deviations: self.data.eject_deviations[i] += data2.eject_deviations[i] for i in data2.eject_distlogs: self.data.eject_distlogs[i] += data2.eject_distlogs[i] def analyze_speed(self): results=[] for size, values in sorted(self.data.size_vs_speed.items(), key=lambda x : x[0]): minimum = quantile(values, 0.2) average = quantile(values, 0.5) maximum = quantile(values, 0.8) results += [(size,maximum,average,minimum,False,False,False,sum(values.values()))] # mark outliers for i in range(1, len(results)-1): for j in range(1,4): if abs(results[i][j] - results[i-1][j]) > 2 and abs(results[i][j] - results[i+1][j]) > 2: tmp = list(results[i]) tmp[j+3] = True results[i] = tuple(tmp) coeff_vs_stddev = [] for coeff in [x/100 for x in range(10,100,1)]: products = [] for size, maximum, average, minimum, maxoutlier, avgoutlier, minoutlier, ndata in results: if not maxoutlier: products += [size**coeff * maximum] coeff_vs_stddev += [(coeff, avg(products), stddev(normalize(products)))] best = min(coeff_vs_stddev, key=lambda v:v[2]) print("size\tcalc\tmax\tavg\tmin\t\tndata") for size, maximum, average, minimum, maxoutlier, avgoutlier, minoutlier, ndata in results: print(str(size) + ":\t" + "%.1f" % (best[1] / size**best[0]) + "\t" + ("*" if maxoutlier else "") + str(maximum) + "\t" + ("*" if avgoutlier else "") + str(average) + "\t" + ("*" if minoutlier else "") + str(minimum) + "\t\t" + str(ndata)) print("size**"+str(best[0])+" * speed = "+str(best[1]) ) def analyze_visible_window_helper(self, foo_vs_visible_window, verbose=False): svw = {} ratios = [] if verbose: print("size\tdiag") for size, rects in sorted(foo_vs_visible_window.items(), key=lambda x:x[0]): maxwidth = quantile(sorted(map(lambda x:x[0], rects)), 0.75) maxheight = quantile(sorted(map(lambda x:x[1], rects)), 0.75) if math.sqrt(maxwidth**2+maxheight**2) < 4000: # TODO FIXME svw[size] = (maxwidth,maxheight) ratios += [maxwidth/maxheight] if verbose: print(str(size)+"\t"+str(math.sqrt(maxwidth**2+maxheight**2))+"\t\t"+str(len(rects))) print ("median ratio = "+str(quantile(sorted(ratios),0.5))) coeff_vs_stddev=[] for coeff in [x/100 for x in range(0,100,1)]: quotients = [] for size, rect in svw.items(): if size != 0: diag = math.sqrt(rect[0]**2+rect[1]**2) quotients += [diag / size**coeff] coeff_vs_stddev += [(coeff, avg(quotients), stddev(normalize(quotients)))] best = min(coeff_vs_stddev, key=lambda v:v[2]) print("diag / size**"+str(best[0])+" = "+str(best[1])) def analyze_visible_window(self, verbose=False): for ncells in sorted(self.data.size_vs_visible_window.keys()): if len(self.data.size_vs_visible_window[ncells]) > 0: print("\nwith "+str(ncells)+" cells, depending on sum(size)") self.analyze_visible_window_helper(self.data.size_vs_visible_window[ncells], verbose) for ncells in sorted(self.data.mass_vs_visible_window.keys()): if len(self.data.mass_vs_visible_window[ncells]) > 0: print("\nwith "+str(ncells)+" cells, depending on sum(mass)") self.analyze_visible_window_helper(self.data.mass_vs_visible_window[ncells], verbose) def analyze_deviations(self, celltype): ds = self.data.eject_deviations[celltype] try: mean, stddev = fit_gaussian(ds) except: mean, stddev = "???", "???" quant = quantile(list(map(abs, ds)), 0.75) print(celltype+" eject/split direction deviations: mean = "+str(mean)+", stddev="+str(stddev)+", ndata="+str(len(ds))) print("\t75%% of the splits had a deviation smaller than %.2f rad = %.2f deg" % (quant, quant*180/math.pi)) print("") #a,b = numpy.histogram(ds, bins=100) #midpoints = map(lambda x : (x[0]+x[1])/2, zip(b, b[1:])) #for n,x in zip(a,midpoints): # print(str(n) + "\t" + str(x)) def analyze_distances(self, celltype): ds = [v[0] for v in self.data.eject_distlogs[celltype]] try: mean, stddev = fit_gaussian(ds) except: mean, stddev = "???", "???" print(celltype+" eject/split distances: mean = "+str(mean)+", stddev="+str(stddev)+", ndata="+str(len(ds))) #a,b = numpy.histogram(ds, bins=100) #midpoints = list(map(lambda x : (x[0]+x[1])/2, zip(b, b[1:]))) #for n,x in zip(a,midpoints): # print(str(n) + "\t" + str(x)) #maxidx = max(range(0,len(a)), key = lambda i : a[i]) #print("\tmaximum at "+str(midpoints[maxidx])) #q = 75 if celltype == "ejected mass" else 75 #quant = quantile(list(map(lambda v : abs(v-midpoints[maxidx]), ds)), q/100) #print("\t"+str(q)+"% of values lie have a distance of at most "+str(quant)+" from the maximum") print("\t75%% of the values lie in the interval %.2f plusminus %.2f" % find_smallest_q_confidence_area(ds, 0.75)) print("")