import math def distance_point_line(p, l1, l2): # (x - l1.x) * (l2.y-l1.y)/(l2.x-l1.x) + l1.y = y # x * (l2.y-l1.y)/(l2.x-l1.x) - l1.x * (l2.y-l1.y)/(l2.x-l1.x) + l1.y - y = 0 # x * (l2.y-l1.y) - l1.x * (l2.y-l1.y) + l1.y * (l2.x-l1.x) - y * (l2.x-l1.x) = 0 # ax + by + c = 0 # with a = (l2.y-l1.y), b = -(l2.x-l1.x), c = l1.y * (l2.x-l1.x) - l1.x * (l2.y-l1.y) a = (l2.y-l1.y) b = -(l2.x-l1.x) c = l1.y * (l2.x-l1.x) - l1.x * (l2.y-l1.y) d = math.sqrt(a**2 + b**2) a/=d b/=d c/=d assert (abs(a*l1.x + b*l1.y + c) < 0.001) assert (abs(a*l2.x + b*l2.y + c) < 0.001) return abs(a*p.x + b*p.y + c) def is_colinear(points, epsilon=1): for point in points: if distance_point_line(point, points[0], points[-1]) > epsilon: return False return True def angle_diff(alpha, beta): result = (alpha-beta) % (2*math.pi) if result > math.pi: result -= 2*math.pi return result